Generators and ranks in finite partial transformation semigroups

We extend the concept of path-cycle, to the semigroup \(\mathcal{P}_{n}\), of all partial maps on \(X_{n}=\{1,2,\ldots,n\}\), and show that the classical decomposition of permutations into disjoint cycles can be extended to elements of \(\mathcal{P}_{n}\) by means of path-cycles. The device is used...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2017
Hauptverfasser: Garba, Goje Uba, Imam, Abdussamad Tanko
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2017
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/128
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-128
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-1282017-07-02T21:58:40Z Generators and ranks in finite partial transformation semigroups Garba, Goje Uba Imam, Abdussamad Tanko path-cycle, (\(m,r\))-path-cycle, \(m\)-path, generating set, (\(m,r\))-rank 20M20 We extend the concept of path-cycle, to the semigroup \(\mathcal{P}_{n}\), of all partial maps on \(X_{n}=\{1,2,\ldots,n\}\), and show that the classical decomposition of permutations into disjoint cycles can be extended to elements of \(\mathcal{P}_{n}\) by means of path-cycles. The device is used to obtain information about generating sets for the semigroup \(\mathcal{P}_{n}\setminus\mathcal{S}_{n}\), of all singular partial maps of \(X_{n}\). Moreover, we give a definition for the (\(m,r\))-rank of \(\mathcal{P}_{n}\setminus\mathcal{S}_{n}\) and show that it is \(\frac{n(n+1)}{2}\). Lugansk National Taras Shevchenko University 2017-07-03 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/128 Algebra and Discrete Mathematics; Vol 23, No 2 (2017) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/128/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/128/212 Copyright (c) 2017 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2017-07-02T21:58:40Z
collection OJS
language English
topic path-cycle
(\(m,r\))-path-cycle
\(m\)-path
generating set
(\(m,r\))-rank
20M20
spellingShingle path-cycle
(\(m,r\))-path-cycle
\(m\)-path
generating set
(\(m,r\))-rank
20M20
Garba, Goje Uba
Imam, Abdussamad Tanko
Generators and ranks in finite partial transformation semigroups
topic_facet path-cycle
(\(m,r\))-path-cycle
\(m\)-path
generating set
(\(m,r\))-rank
20M20
format Article
author Garba, Goje Uba
Imam, Abdussamad Tanko
author_facet Garba, Goje Uba
Imam, Abdussamad Tanko
author_sort Garba, Goje Uba
title Generators and ranks in finite partial transformation semigroups
title_short Generators and ranks in finite partial transformation semigroups
title_full Generators and ranks in finite partial transformation semigroups
title_fullStr Generators and ranks in finite partial transformation semigroups
title_full_unstemmed Generators and ranks in finite partial transformation semigroups
title_sort generators and ranks in finite partial transformation semigroups
description We extend the concept of path-cycle, to the semigroup \(\mathcal{P}_{n}\), of all partial maps on \(X_{n}=\{1,2,\ldots,n\}\), and show that the classical decomposition of permutations into disjoint cycles can be extended to elements of \(\mathcal{P}_{n}\) by means of path-cycles. The device is used to obtain information about generating sets for the semigroup \(\mathcal{P}_{n}\setminus\mathcal{S}_{n}\), of all singular partial maps of \(X_{n}\). Moreover, we give a definition for the (\(m,r\))-rank of \(\mathcal{P}_{n}\setminus\mathcal{S}_{n}\) and show that it is \(\frac{n(n+1)}{2}\).
publisher Lugansk National Taras Shevchenko University
publishDate 2017
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/128
work_keys_str_mv AT garbagojeuba generatorsandranksinfinitepartialtransformationsemigroups
AT imamabdussamadtanko generatorsandranksinfinitepartialtransformationsemigroups
first_indexed 2025-07-17T10:30:02Z
last_indexed 2025-07-17T10:30:02Z
_version_ 1837889817770196992