A horizontal mesh algorithm for posets with positive Tits form

Following our paper [Fund. Inform. 136 (2015), 345--379],  we define a~horizontal mesh algorithm that constructsa~$\widehat{\Phi}_I$-mesh translation quiver  $\Gamma(\widehat{\CR}_I,\widehat{\Phi}_I)$ consisting of$\widehat{\Phi}_I$-orbits of the finite set $\widehat{\CR}_I=\{v\in\mathbb{Z}^I\; ;\;\...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Kaniecki, Mariusz, Kosakowska, Justyna, Malicki, Piotr, Marczak, Grzegorz
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2016
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/130
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:Following our paper [Fund. Inform. 136 (2015), 345--379],  we define a~horizontal mesh algorithm that constructsa~$\widehat{\Phi}_I$-mesh translation quiver  $\Gamma(\widehat{\CR}_I,\widehat{\Phi}_I)$ consisting of$\widehat{\Phi}_I$-orbits of the finite set $\widehat{\CR}_I=\{v\in\mathbb{Z}^I\; ;\;\widehat{q}_I(v)=1\}$ of Tits roots of  a~poset $I$ with positivedefinite Tits quadratic form  $\widehat q_I:\mathbb{Z}^I \to \mathbb{Z}$. Under the assumption that  $\widehat q_I:\mathbb{Z}^I \to \mathbb{Z}$ is positive definite,  the algorithm constructs $\Gamma(\widehat{\CR}_I,\widehat{\Phi}_I)$ such that it is isomorphic with the $\widehat{\Phi}_D$-mesh translation quiver  $\Gamma({\CR}_D,{\Phi}_D)$ of  $\widehat{\Phi}_D$-orbits of the finite set ${\CR}_D$ of roots  of a simply laced Dynkin quiver $D$ associated with $I$.