A horizontal mesh algorithm for posets with positive Tits form

Following our paper [Fund. Inform. 136 (2015), 345--379],  we define a~horizontal mesh algorithm that constructsa~$\widehat{\Phi}_I$-mesh translation quiver  $\Gamma(\widehat{\CR}_I,\widehat{\Phi}_I)$ consisting of$\widehat{\Phi}_I$-orbits of the finite set $\widehat{\CR}_I=\{v\in\mathbb{Z}^I\; ;\;\...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Kaniecki, Mariusz, Kosakowska, Justyna, Malicki, Piotr, Marczak, Grzegorz
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2016
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/130
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-130
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-1302016-12-30T22:42:45Z A horizontal mesh algorithm for posets with positive Tits form Kaniecki, Mariusz Kosakowska, Justyna Malicki, Piotr Marczak, Grzegorz poset; combinatorial algorithm; Dynkin diagram; mesh geometry of roots; quadratic form 68R10; 05C50; 06A07; 15A63 Following our paper [Fund. Inform. 136 (2015), 345--379],  we define a~horizontal mesh algorithm that constructsa~$\widehat{\Phi}_I$-mesh translation quiver  $\Gamma(\widehat{\CR}_I,\widehat{\Phi}_I)$ consisting of$\widehat{\Phi}_I$-orbits of the finite set $\widehat{\CR}_I=\{v\in\mathbb{Z}^I\; ;\;\widehat{q}_I(v)=1\}$ of Tits roots of  a~poset $I$ with positivedefinite Tits quadratic form  $\widehat q_I:\mathbb{Z}^I \to \mathbb{Z}$. Under the assumption that  $\widehat q_I:\mathbb{Z}^I \to \mathbb{Z}$ is positive definite,  the algorithm constructs $\Gamma(\widehat{\CR}_I,\widehat{\Phi}_I)$ such that it is isomorphic with the $\widehat{\Phi}_D$-mesh translation quiver  $\Gamma({\CR}_D,{\Phi}_D)$ of  $\widehat{\Phi}_D$-orbits of the finite set ${\CR}_D$ of roots  of a simply laced Dynkin quiver $D$ associated with $I$. Lugansk National Taras Shevchenko University 2016-12-31 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/130 Algebra and Discrete Mathematics; Vol 22, No 2 (2016) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/130/pdf Copyright (c) 2016 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2016-12-30T22:42:45Z
collection OJS
language English
topic poset
combinatorial algorithm
Dynkin diagram
mesh geometry of roots
quadratic form
68R10
05C50
06A07
15A63
spellingShingle poset
combinatorial algorithm
Dynkin diagram
mesh geometry of roots
quadratic form
68R10
05C50
06A07
15A63
Kaniecki, Mariusz
Kosakowska, Justyna
Malicki, Piotr
Marczak, Grzegorz
A horizontal mesh algorithm for posets with positive Tits form
topic_facet poset
combinatorial algorithm
Dynkin diagram
mesh geometry of roots
quadratic form
68R10
05C50
06A07
15A63
format Article
author Kaniecki, Mariusz
Kosakowska, Justyna
Malicki, Piotr
Marczak, Grzegorz
author_facet Kaniecki, Mariusz
Kosakowska, Justyna
Malicki, Piotr
Marczak, Grzegorz
author_sort Kaniecki, Mariusz
title A horizontal mesh algorithm for posets with positive Tits form
title_short A horizontal mesh algorithm for posets with positive Tits form
title_full A horizontal mesh algorithm for posets with positive Tits form
title_fullStr A horizontal mesh algorithm for posets with positive Tits form
title_full_unstemmed A horizontal mesh algorithm for posets with positive Tits form
title_sort horizontal mesh algorithm for posets with positive tits form
description Following our paper [Fund. Inform. 136 (2015), 345--379],  we define a~horizontal mesh algorithm that constructsa~$\widehat{\Phi}_I$-mesh translation quiver  $\Gamma(\widehat{\CR}_I,\widehat{\Phi}_I)$ consisting of$\widehat{\Phi}_I$-orbits of the finite set $\widehat{\CR}_I=\{v\in\mathbb{Z}^I\; ;\;\widehat{q}_I(v)=1\}$ of Tits roots of  a~poset $I$ with positivedefinite Tits quadratic form  $\widehat q_I:\mathbb{Z}^I \to \mathbb{Z}$. Under the assumption that  $\widehat q_I:\mathbb{Z}^I \to \mathbb{Z}$ is positive definite,  the algorithm constructs $\Gamma(\widehat{\CR}_I,\widehat{\Phi}_I)$ such that it is isomorphic with the $\widehat{\Phi}_D$-mesh translation quiver  $\Gamma({\CR}_D,{\Phi}_D)$ of  $\widehat{\Phi}_D$-orbits of the finite set ${\CR}_D$ of roots  of a simply laced Dynkin quiver $D$ associated with $I$.
publisher Lugansk National Taras Shevchenko University
publishDate 2016
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/130
work_keys_str_mv AT kanieckimariusz ahorizontalmeshalgorithmforposetswithpositivetitsform
AT kosakowskajustyna ahorizontalmeshalgorithmforposetswithpositivetitsform
AT malickipiotr ahorizontalmeshalgorithmforposetswithpositivetitsform
AT marczakgrzegorz ahorizontalmeshalgorithmforposetswithpositivetitsform
AT kanieckimariusz horizontalmeshalgorithmforposetswithpositivetitsform
AT kosakowskajustyna horizontalmeshalgorithmforposetswithpositivetitsform
AT malickipiotr horizontalmeshalgorithmforposetswithpositivetitsform
AT marczakgrzegorz horizontalmeshalgorithmforposetswithpositivetitsform
first_indexed 2025-07-17T10:36:10Z
last_indexed 2025-07-17T10:36:10Z
_version_ 1837890085833408512