A horizontal mesh algorithm for posets with positive Tits form
Following our paper [Fund. Inform. 136 (2015), 345--379], we define a~horizontal mesh algorithm that constructsa~$\widehat{\Phi}_I$-mesh translation quiver $\Gamma(\widehat{\CR}_I,\widehat{\Phi}_I)$ consisting of$\widehat{\Phi}_I$-orbits of the finite set $\widehat{\CR}_I=\{v\in\mathbb{Z}^I\; ;\;\...
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2016
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/130 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematicsid |
oai:ojs.admjournal.luguniv.edu.ua:article-130 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-1302016-12-30T22:42:45Z A horizontal mesh algorithm for posets with positive Tits form Kaniecki, Mariusz Kosakowska, Justyna Malicki, Piotr Marczak, Grzegorz poset; combinatorial algorithm; Dynkin diagram; mesh geometry of roots; quadratic form 68R10; 05C50; 06A07; 15A63 Following our paper [Fund. Inform. 136 (2015), 345--379], we define a~horizontal mesh algorithm that constructsa~$\widehat{\Phi}_I$-mesh translation quiver $\Gamma(\widehat{\CR}_I,\widehat{\Phi}_I)$ consisting of$\widehat{\Phi}_I$-orbits of the finite set $\widehat{\CR}_I=\{v\in\mathbb{Z}^I\; ;\;\widehat{q}_I(v)=1\}$ of Tits roots of a~poset $I$ with positivedefinite Tits quadratic form $\widehat q_I:\mathbb{Z}^I \to \mathbb{Z}$. Under the assumption that $\widehat q_I:\mathbb{Z}^I \to \mathbb{Z}$ is positive definite, the algorithm constructs $\Gamma(\widehat{\CR}_I,\widehat{\Phi}_I)$ such that it is isomorphic with the $\widehat{\Phi}_D$-mesh translation quiver $\Gamma({\CR}_D,{\Phi}_D)$ of $\widehat{\Phi}_D$-orbits of the finite set ${\CR}_D$ of roots of a simply laced Dynkin quiver $D$ associated with $I$. Lugansk National Taras Shevchenko University 2016-12-31 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/130 Algebra and Discrete Mathematics; Vol 22, No 2 (2016) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/130/pdf Copyright (c) 2016 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
baseUrl_str |
|
datestamp_date |
2016-12-30T22:42:45Z |
collection |
OJS |
language |
English |
topic |
poset combinatorial algorithm Dynkin diagram mesh geometry of roots quadratic form 68R10 05C50 06A07 15A63 |
spellingShingle |
poset combinatorial algorithm Dynkin diagram mesh geometry of roots quadratic form 68R10 05C50 06A07 15A63 Kaniecki, Mariusz Kosakowska, Justyna Malicki, Piotr Marczak, Grzegorz A horizontal mesh algorithm for posets with positive Tits form |
topic_facet |
poset combinatorial algorithm Dynkin diagram mesh geometry of roots quadratic form 68R10 05C50 06A07 15A63 |
format |
Article |
author |
Kaniecki, Mariusz Kosakowska, Justyna Malicki, Piotr Marczak, Grzegorz |
author_facet |
Kaniecki, Mariusz Kosakowska, Justyna Malicki, Piotr Marczak, Grzegorz |
author_sort |
Kaniecki, Mariusz |
title |
A horizontal mesh algorithm for posets with positive Tits form |
title_short |
A horizontal mesh algorithm for posets with positive Tits form |
title_full |
A horizontal mesh algorithm for posets with positive Tits form |
title_fullStr |
A horizontal mesh algorithm for posets with positive Tits form |
title_full_unstemmed |
A horizontal mesh algorithm for posets with positive Tits form |
title_sort |
horizontal mesh algorithm for posets with positive tits form |
description |
Following our paper [Fund. Inform. 136 (2015), 345--379], we define a~horizontal mesh algorithm that constructsa~$\widehat{\Phi}_I$-mesh translation quiver $\Gamma(\widehat{\CR}_I,\widehat{\Phi}_I)$ consisting of$\widehat{\Phi}_I$-orbits of the finite set $\widehat{\CR}_I=\{v\in\mathbb{Z}^I\; ;\;\widehat{q}_I(v)=1\}$ of Tits roots of a~poset $I$ with positivedefinite Tits quadratic form $\widehat q_I:\mathbb{Z}^I \to \mathbb{Z}$. Under the assumption that $\widehat q_I:\mathbb{Z}^I \to \mathbb{Z}$ is positive definite, the algorithm constructs $\Gamma(\widehat{\CR}_I,\widehat{\Phi}_I)$ such that it is isomorphic with the $\widehat{\Phi}_D$-mesh translation quiver $\Gamma({\CR}_D,{\Phi}_D)$ of $\widehat{\Phi}_D$-orbits of the finite set ${\CR}_D$ of roots of a simply laced Dynkin quiver $D$ associated with $I$. |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2016 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/130 |
work_keys_str_mv |
AT kanieckimariusz ahorizontalmeshalgorithmforposetswithpositivetitsform AT kosakowskajustyna ahorizontalmeshalgorithmforposetswithpositivetitsform AT malickipiotr ahorizontalmeshalgorithmforposetswithpositivetitsform AT marczakgrzegorz ahorizontalmeshalgorithmforposetswithpositivetitsform AT kanieckimariusz horizontalmeshalgorithmforposetswithpositivetitsform AT kosakowskajustyna horizontalmeshalgorithmforposetswithpositivetitsform AT malickipiotr horizontalmeshalgorithmforposetswithpositivetitsform AT marczakgrzegorz horizontalmeshalgorithmforposetswithpositivetitsform |
first_indexed |
2025-07-17T10:36:10Z |
last_indexed |
2025-07-17T10:36:10Z |
_version_ |
1837890085833408512 |