A filtration on the ring of Laurent polynomials and representations of the general linear Lie algebra
We first present a filtration on the ring \(L_n\) of Laurent polynomials such that the direct sum decomposition of its associated graded ring \(gr L_n\) agrees with the direct sum decomposition of \(gr L_n\), as a module over the complex general linear Lie algebra \(\mathfrak{gl}(n)\), into its simp...
Збережено в:
Дата: | 2021 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2021
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1304 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete MathematicsРезюме: | We first present a filtration on the ring \(L_n\) of Laurent polynomials such that the direct sum decomposition of its associated graded ring \(gr L_n\) agrees with the direct sum decomposition of \(gr L_n\), as a module over the complex general linear Lie algebra \(\mathfrak{gl}(n)\), into its simple submodules. Next, generalizing the simple modules occurring in the associated graded ring \(gr L_n\), we give some explicit constructions of weight multiplicity-free irreducible representations of \(\mathfrak{gl}(n)\). |
---|