On nilpotent Lie algebras of derivations with large center

Let \(\mathbb K\) be a field of characteristic zero and \(A\) an associative commutative \(\mathbb K\)-algebra that is an integral domain. Denote by \(R\) the quotient field of \(A\) and by \(W(A)=R\operatorname{Der} A\) the Lie algebra of derivations on \(R\) that are products of elements of \(R\)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2016
1. Verfasser: Sysak, Kateryna
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2016
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/132
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Beschreibung
Zusammenfassung:Let \(\mathbb K\) be a field of characteristic zero and \(A\) an associative commutative \(\mathbb K\)-algebra that is an integral domain. Denote by \(R\) the quotient field of \(A\) and by \(W(A)=R\operatorname{Der} A\) the Lie algebra of derivations on \(R\) that are products of elements of \(R\) and derivations on \(A\). Nilpotent Lie subalgebras of the Lie algebra \(W(A)\) of rank \(n\) over \(R\) with the center of rank \(n-1\) are studied. It is proved that such a Lie algebra \(L\) is isomorphic to a subalgebra of the Lie algebra \(u_n(F)\) of triangular polynomial derivations where \(F\) is the field of constants for \(L\).