On hereditary reducibility of 2-monomial matrices over commutative rings

A 2-monomial matrix over a commutative ring \(R\) is by definition any matrix of the form \(M(t,k,n)=\Phi\left(\begin{smallmatrix}I_k&0\\0&tI_{n-k}\end{smallmatrix}\right)\), \(0<k<n\), where \(t\) is a non-invertible element of \(R\), \(\Phi\) the companion matrix to \...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2019
Автори: Bondarenko, Vitaliy M., Gildea, Joseph, Tylyshchak, Alexander A., Yurchenko, Natalia V.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2019
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1333
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1333
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-13332019-04-09T04:55:37Z On hereditary reducibility of 2-monomial matrices over commutative rings Bondarenko, Vitaliy M. Gildea, Joseph Tylyshchak, Alexander A. Yurchenko, Natalia V. commutative ring, Jacobson radical, 2-monomial matrix, hereditary reducible matrix, similarity, linear operator, free module 15B33, 15A30 A 2-monomial matrix over a commutative ring \(R\) is by definition any matrix of the form \(M(t,k,n)=\Phi\left(\begin{smallmatrix}I_k&0\\0&tI_{n-k}\end{smallmatrix}\right)\), \(0<k<n\), where \(t\) is a non-invertible element of \(R\), \(\Phi\) the companion matrix to \(\lambda^n-1\) and \(I_k\)  the identity \(k\times k\)-matrix. In this paper we introduce the notion of hereditary reducibility (for these matrices) and indicate one general condition of the introduced reducibility. Lugansk National Taras Shevchenko University 2019-03-23 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1333 Algebra and Discrete Mathematics; Vol 27, No 1 (2019) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1333/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1333/499 Copyright (c) 2019 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2019-04-09T04:55:37Z
collection OJS
language English
topic commutative ring
Jacobson radical
2-monomial matrix
hereditary reducible matrix
similarity
linear operator
free module
15B33
15A30
spellingShingle commutative ring
Jacobson radical
2-monomial matrix
hereditary reducible matrix
similarity
linear operator
free module
15B33
15A30
Bondarenko, Vitaliy M.
Gildea, Joseph
Tylyshchak, Alexander A.
Yurchenko, Natalia V.
On hereditary reducibility of 2-monomial matrices over commutative rings
topic_facet commutative ring
Jacobson radical
2-monomial matrix
hereditary reducible matrix
similarity
linear operator
free module
15B33
15A30
format Article
author Bondarenko, Vitaliy M.
Gildea, Joseph
Tylyshchak, Alexander A.
Yurchenko, Natalia V.
author_facet Bondarenko, Vitaliy M.
Gildea, Joseph
Tylyshchak, Alexander A.
Yurchenko, Natalia V.
author_sort Bondarenko, Vitaliy M.
title On hereditary reducibility of 2-monomial matrices over commutative rings
title_short On hereditary reducibility of 2-monomial matrices over commutative rings
title_full On hereditary reducibility of 2-monomial matrices over commutative rings
title_fullStr On hereditary reducibility of 2-monomial matrices over commutative rings
title_full_unstemmed On hereditary reducibility of 2-monomial matrices over commutative rings
title_sort on hereditary reducibility of 2-monomial matrices over commutative rings
description A 2-monomial matrix over a commutative ring \(R\) is by definition any matrix of the form \(M(t,k,n)=\Phi\left(\begin{smallmatrix}I_k&0\\0&tI_{n-k}\end{smallmatrix}\right)\), \(0<k<n\), where \(t\) is a non-invertible element of \(R\), \(\Phi\) the companion matrix to \(\lambda^n-1\) and \(I_k\)  the identity \(k\times k\)-matrix. In this paper we introduce the notion of hereditary reducibility (for these matrices) and indicate one general condition of the introduced reducibility.
publisher Lugansk National Taras Shevchenko University
publishDate 2019
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1333
work_keys_str_mv AT bondarenkovitaliym onhereditaryreducibilityof2monomialmatricesovercommutativerings
AT gildeajoseph onhereditaryreducibilityof2monomialmatricesovercommutativerings
AT tylyshchakalexandera onhereditaryreducibilityof2monomialmatricesovercommutativerings
AT yurchenkonataliav onhereditaryreducibilityof2monomialmatricesovercommutativerings
first_indexed 2025-07-17T10:34:15Z
last_indexed 2025-07-17T10:34:15Z
_version_ 1837889965229342720