Groups containing locally maximal product-free sets of size 4

Every locally maximal product-free set \(S\) in a finite group \(G\) satisfies \(G=S\cup SS \cup S^{-1}S \cup SS^{-1}\cup \sqrt{S}\), where \(SS=\{xy\mid x,y\in S\}\), \(S^{-1}S=\{x^{-1}y\mid x,y\in S\}\), \(SS^{-1}=\{xy^{-1}\mid x,y\in S\}\) and \(\sqrt{S}=\{x\in G\mid x^2\in S\}\). To better under...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2021
Автор: Anabanti, C. S.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2021
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1347
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1347
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-13472021-07-19T08:39:30Z Groups containing locally maximal product-free sets of size 4 Anabanti, C. S. product-free sets, locally maximal, maximal, groups 20D60, 05E15, 11B75 Every locally maximal product-free set \(S\) in a finite group \(G\) satisfies \(G=S\cup SS \cup S^{-1}S \cup SS^{-1}\cup \sqrt{S}\), where \(SS=\{xy\mid x,y\in S\}\), \(S^{-1}S=\{x^{-1}y\mid x,y\in S\}\), \(SS^{-1}=\{xy^{-1}\mid x,y\in S\}\) and \(\sqrt{S}=\{x\in G\mid x^2\in S\}\). To better understand locally maximal product-free sets, Bertram asked whether every locally maximal product-free set \(S\) in a finite abelian group satisfy \(|\sqrt{S}|\leq 2|S|\). This question was recently answered in the negation by the current author. Here, we improve some results on the structures and sizes of finite groups in terms of their locally maximal product-free sets. A consequence of our results is the classification of abelian groups that contain locally maximal product-free sets of size \(4\), continuing the work of Street, Whitehead, Giudici and Hart on the classification of groups containing locally maximal product-free sets of small sizes. We also obtain partial results on arbitrary groups containing locally maximal product-free sets of size \(4\), and conclude with a conjecture on the size \(4\) problem as well as an open problem on the general case. Lugansk National Taras Shevchenko University 2021-07-19 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1347 10.12958/adm1347 Algebra and Discrete Mathematics; Vol 31, No 2 (2021) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1347/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1347/505 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1347/866 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1347/867 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1347/868 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1347/869 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1347/870 Copyright (c) 2021 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic product-free sets
locally maximal
maximal
groups
20D60
05E15
11B75
spellingShingle product-free sets
locally maximal
maximal
groups
20D60
05E15
11B75
Anabanti, C. S.
Groups containing locally maximal product-free sets of size 4
topic_facet product-free sets
locally maximal
maximal
groups
20D60
05E15
11B75
format Article
author Anabanti, C. S.
author_facet Anabanti, C. S.
author_sort Anabanti, C. S.
title Groups containing locally maximal product-free sets of size 4
title_short Groups containing locally maximal product-free sets of size 4
title_full Groups containing locally maximal product-free sets of size 4
title_fullStr Groups containing locally maximal product-free sets of size 4
title_full_unstemmed Groups containing locally maximal product-free sets of size 4
title_sort groups containing locally maximal product-free sets of size 4
description Every locally maximal product-free set \(S\) in a finite group \(G\) satisfies \(G=S\cup SS \cup S^{-1}S \cup SS^{-1}\cup \sqrt{S}\), where \(SS=\{xy\mid x,y\in S\}\), \(S^{-1}S=\{x^{-1}y\mid x,y\in S\}\), \(SS^{-1}=\{xy^{-1}\mid x,y\in S\}\) and \(\sqrt{S}=\{x\in G\mid x^2\in S\}\). To better understand locally maximal product-free sets, Bertram asked whether every locally maximal product-free set \(S\) in a finite abelian group satisfy \(|\sqrt{S}|\leq 2|S|\). This question was recently answered in the negation by the current author. Here, we improve some results on the structures and sizes of finite groups in terms of their locally maximal product-free sets. A consequence of our results is the classification of abelian groups that contain locally maximal product-free sets of size \(4\), continuing the work of Street, Whitehead, Giudici and Hart on the classification of groups containing locally maximal product-free sets of small sizes. We also obtain partial results on arbitrary groups containing locally maximal product-free sets of size \(4\), and conclude with a conjecture on the size \(4\) problem as well as an open problem on the general case.
publisher Lugansk National Taras Shevchenko University
publishDate 2021
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1347
work_keys_str_mv AT anabantics groupscontaininglocallymaximalproductfreesetsofsize4
first_indexed 2024-04-12T06:25:37Z
last_indexed 2024-04-12T06:25:37Z
_version_ 1796109206498050048