On free vector balleans
A vector balleans is a vector space over \(\mathbb{R}\) endowed with a coarse structure in such a way that the vector operations are coarse mappings. We prove that, for every ballean \((X, \mathcal{E})\), there exists the unique free vector ballean \(\mathbb{V}(X, \mathcal{E})\) and describe the coa...
Збережено в:
Дата: | 2019 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2019
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1351 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematicsid |
oai:ojs.admjournal.luguniv.edu.ua:article-1351 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-13512019-04-09T04:50:51Z On free vector balleans Protasov, Igor Protasova, Ksenia coarse structure, ballean, vector ballean, free vector ballean 46A17, 54E35 A vector balleans is a vector space over \(\mathbb{R}\) endowed with a coarse structure in such a way that the vector operations are coarse mappings. We prove that, for every ballean \((X, \mathcal{E})\), there exists the unique free vector ballean \(\mathbb{V}(X, \mathcal{E})\) and describe the coarse structure of \(\mathbb{V}(X, \mathcal{E})\). It is shown that normality of \(\mathbb{V}(X, \mathcal{E})\) is equivalent to metrizability of \((X, \mathcal{E})\). Lugansk National Taras Shevchenko University 2019-03-23 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1351 Algebra and Discrete Mathematics; Vol 27, No 1 (2019) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1351/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1351/506 Copyright (c) 2019 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
collection |
OJS |
language |
English |
topic |
coarse structure ballean vector ballean free vector ballean 46A17 54E35 |
spellingShingle |
coarse structure ballean vector ballean free vector ballean 46A17 54E35 Protasov, Igor Protasova, Ksenia On free vector balleans |
topic_facet |
coarse structure ballean vector ballean free vector ballean 46A17 54E35 |
format |
Article |
author |
Protasov, Igor Protasova, Ksenia |
author_facet |
Protasov, Igor Protasova, Ksenia |
author_sort |
Protasov, Igor |
title |
On free vector balleans |
title_short |
On free vector balleans |
title_full |
On free vector balleans |
title_fullStr |
On free vector balleans |
title_full_unstemmed |
On free vector balleans |
title_sort |
on free vector balleans |
description |
A vector balleans is a vector space over \(\mathbb{R}\) endowed with a coarse structure in such a way that the vector operations are coarse mappings. We prove that, for every ballean \((X, \mathcal{E})\), there exists the unique free vector ballean \(\mathbb{V}(X, \mathcal{E})\) and describe the coarse structure of \(\mathbb{V}(X, \mathcal{E})\). It is shown that normality of \(\mathbb{V}(X, \mathcal{E})\) is equivalent to metrizability of \((X, \mathcal{E})\). |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2019 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1351 |
work_keys_str_mv |
AT protasovigor onfreevectorballeans AT protasovaksenia onfreevectorballeans |
first_indexed |
2024-04-12T06:25:10Z |
last_indexed |
2024-04-12T06:25:10Z |
_version_ |
1796109230101495808 |