Diagonal torsion matrices associated with modular data
Modular data are commonly studied in mathematics and physics. A modular datum defines a finite-dimensional representation of the modular group \(SL_2(\mathbb{Z})\). Cuntz (2007) defined isomorphic integral modular data. Here we discuss isomorphic integral and non-integral modular data as well as non...
Збережено в:
Дата: | 2021 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2021
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1368 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematicsid |
oai:ojs.admjournal.luguniv.edu.ua:article-1368 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-13682021-11-09T03:53:16Z Diagonal torsion matrices associated with modular data Singh, G. Fourier matrices, diagonal torsion matrices, fusion rings, \(C\)-algebras Primary 05E40; Secondary 05E99, 81R05 Modular data are commonly studied in mathematics and physics. A modular datum defines a finite-dimensional representation of the modular group \(SL_2(\mathbb{Z})\). Cuntz (2007) defined isomorphic integral modular data. Here we discuss isomorphic integral and non-integral modular data as well as non-isomorphic but closely related modular data. In this paper, we give some insights into diagonal torsion matrices associated to modular data. Lugansk National Taras Shevchenko University 2021-11-09 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1368 10.12958/adm1368 Algebra and Discrete Mathematics; Vol 32, No 1 (2021) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1368/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1368/518 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1368/871 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1368/872 Copyright (c) 2021 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
collection |
OJS |
language |
English |
topic |
Fourier matrices diagonal torsion matrices fusion rings \(C\)-algebras Primary 05E40; Secondary 05E99 81R05 |
spellingShingle |
Fourier matrices diagonal torsion matrices fusion rings \(C\)-algebras Primary 05E40; Secondary 05E99 81R05 Singh, G. Diagonal torsion matrices associated with modular data |
topic_facet |
Fourier matrices diagonal torsion matrices fusion rings \(C\)-algebras Primary 05E40; Secondary 05E99 81R05 |
format |
Article |
author |
Singh, G. |
author_facet |
Singh, G. |
author_sort |
Singh, G. |
title |
Diagonal torsion matrices associated with modular data |
title_short |
Diagonal torsion matrices associated with modular data |
title_full |
Diagonal torsion matrices associated with modular data |
title_fullStr |
Diagonal torsion matrices associated with modular data |
title_full_unstemmed |
Diagonal torsion matrices associated with modular data |
title_sort |
diagonal torsion matrices associated with modular data |
description |
Modular data are commonly studied in mathematics and physics. A modular datum defines a finite-dimensional representation of the modular group \(SL_2(\mathbb{Z})\). Cuntz (2007) defined isomorphic integral modular data. Here we discuss isomorphic integral and non-integral modular data as well as non-isomorphic but closely related modular data. In this paper, we give some insights into diagonal torsion matrices associated to modular data. |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2021 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1368 |
work_keys_str_mv |
AT singhg diagonaltorsionmatricesassociatedwithmodulardata |
first_indexed |
2024-04-12T06:25:37Z |
last_indexed |
2024-04-12T06:25:37Z |
_version_ |
1796109206603956224 |