Diagonal torsion matrices associated with modular data

Modular data are commonly studied in mathematics and physics. A modular datum defines a finite-dimensional representation of the modular group \(SL_2(\mathbb{Z})\). Cuntz (2007) defined isomorphic integral modular data. Here we discuss isomorphic integral and non-integral modular data as well as non...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2021
Автор: Singh, G.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2021
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1368
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1368
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-13682021-11-09T03:53:16Z Diagonal torsion matrices associated with modular data Singh, G. Fourier matrices, diagonal torsion matrices, fusion rings, \(C\)-algebras Primary 05E40; Secondary 05E99, 81R05 Modular data are commonly studied in mathematics and physics. A modular datum defines a finite-dimensional representation of the modular group \(SL_2(\mathbb{Z})\). Cuntz (2007) defined isomorphic integral modular data. Here we discuss isomorphic integral and non-integral modular data as well as non-isomorphic but closely related modular data. In this paper, we give some insights into diagonal torsion matrices associated to modular data. Lugansk National Taras Shevchenko University 2021-11-09 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1368 10.12958/adm1368 Algebra and Discrete Mathematics; Vol 32, No 1 (2021) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1368/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1368/518 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1368/871 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1368/872 Copyright (c) 2021 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic Fourier matrices
diagonal torsion matrices
fusion rings
\(C\)-algebras
Primary 05E40; Secondary 05E99
81R05
spellingShingle Fourier matrices
diagonal torsion matrices
fusion rings
\(C\)-algebras
Primary 05E40; Secondary 05E99
81R05
Singh, G.
Diagonal torsion matrices associated with modular data
topic_facet Fourier matrices
diagonal torsion matrices
fusion rings
\(C\)-algebras
Primary 05E40; Secondary 05E99
81R05
format Article
author Singh, G.
author_facet Singh, G.
author_sort Singh, G.
title Diagonal torsion matrices associated with modular data
title_short Diagonal torsion matrices associated with modular data
title_full Diagonal torsion matrices associated with modular data
title_fullStr Diagonal torsion matrices associated with modular data
title_full_unstemmed Diagonal torsion matrices associated with modular data
title_sort diagonal torsion matrices associated with modular data
description Modular data are commonly studied in mathematics and physics. A modular datum defines a finite-dimensional representation of the modular group \(SL_2(\mathbb{Z})\). Cuntz (2007) defined isomorphic integral modular data. Here we discuss isomorphic integral and non-integral modular data as well as non-isomorphic but closely related modular data. In this paper, we give some insights into diagonal torsion matrices associated to modular data.
publisher Lugansk National Taras Shevchenko University
publishDate 2021
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1368
work_keys_str_mv AT singhg diagonaltorsionmatricesassociatedwithmodulardata
first_indexed 2024-04-12T06:25:37Z
last_indexed 2024-04-12T06:25:37Z
_version_ 1796109206603956224