Normally \(\zeta\)-reversible profinite groups
We examine (finitely generated) profinite groups in which two formal Dirichlet series, the normal subgroup zeta function and the normal probabilistic zeta function, coincide; we call these groups normally \(\zeta\)-reversible. We conjecture that these groups are pronilpotent and we prove this conjec...
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2016
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/137 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete MathematicsРезюме: | We examine (finitely generated) profinite groups in which two formal Dirichlet series, the normal subgroup zeta function and the normal probabilistic zeta function, coincide; we call these groups normally \(\zeta\)-reversible. We conjecture that these groups are pronilpotent and we prove this conjecture if \(G\) is a normally \(\zeta\)-reversible satisfying one of the following properties: \(G\) is prosoluble, \(G\) is perfect, all the nonabelian composition factors of \(G\) are alternating groups. |
---|