On a product of two formational \(\mathrm{tcc}\)-subgroups

A subgroup \(A\) of a group \(G\) is called \(\mathrm{tcc}\)-subgroup in \(G\), if there is a subgroup \(T\) of \(G\) such that \(G=AT\) and  for any \(X\le A\) and \(Y\le T\) there exists an element \(u\in \langle X,Y\rangle \) such that \(XY^u\leq G\). The notation \(H\le G \) means that \(H\) is...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2021
Автор: Trofimuk, A.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2021
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1396
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1396
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-13962021-01-29T09:38:49Z On a product of two formational \(\mathrm{tcc}\)-subgroups Trofimuk, A. supersoluble group, totally permutable product, saturated formation, tcc-permutable product, tcc-subgroup 20D10 A subgroup \(A\) of a group \(G\) is called \(\mathrm{tcc}\)-subgroup in \(G\), if there is a subgroup \(T\) of \(G\) such that \(G=AT\) and  for any \(X\le A\) and \(Y\le T\) there exists an element \(u\in \langle X,Y\rangle \) such that \(XY^u\leq G\). The notation \(H\le G \) means that \(H\) is a subgroup of a group \(G\).  In this paper we consider a group \(G=AB\) such that \(A\) and \(B\) are \(\mathrm{tcc}\)-subgroups in \(G\). We prove that \(G\) belongs to \(\frak F\), when  \(A\) and \(B\) belong to \(\mathfrak{F}\) and  \(\mathfrak{F}\) is a saturated formation of soluble groups such that \(\mathfrak{U} \subseteq \mathfrak{F}\). Here \(\mathfrak{U}\) is the formation of all supersoluble groups. Lugansk National Taras Shevchenko University 2021-01-29 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1396 10.12958/adm1396 Algebra and Discrete Mathematics; Vol 30, No 2 (2020) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1396/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1396/535 Copyright (c) 2021 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic supersoluble group
totally permutable product
saturated formation
tcc-permutable product
tcc-subgroup
20D10
spellingShingle supersoluble group
totally permutable product
saturated formation
tcc-permutable product
tcc-subgroup
20D10
Trofimuk, A.
On a product of two formational \(\mathrm{tcc}\)-subgroups
topic_facet supersoluble group
totally permutable product
saturated formation
tcc-permutable product
tcc-subgroup
20D10
format Article
author Trofimuk, A.
author_facet Trofimuk, A.
author_sort Trofimuk, A.
title On a product of two formational \(\mathrm{tcc}\)-subgroups
title_short On a product of two formational \(\mathrm{tcc}\)-subgroups
title_full On a product of two formational \(\mathrm{tcc}\)-subgroups
title_fullStr On a product of two formational \(\mathrm{tcc}\)-subgroups
title_full_unstemmed On a product of two formational \(\mathrm{tcc}\)-subgroups
title_sort on a product of two formational \(\mathrm{tcc}\)-subgroups
description A subgroup \(A\) of a group \(G\) is called \(\mathrm{tcc}\)-subgroup in \(G\), if there is a subgroup \(T\) of \(G\) such that \(G=AT\) and  for any \(X\le A\) and \(Y\le T\) there exists an element \(u\in \langle X,Y\rangle \) such that \(XY^u\leq G\). The notation \(H\le G \) means that \(H\) is a subgroup of a group \(G\).  In this paper we consider a group \(G=AB\) such that \(A\) and \(B\) are \(\mathrm{tcc}\)-subgroups in \(G\). We prove that \(G\) belongs to \(\frak F\), when  \(A\) and \(B\) belong to \(\mathfrak{F}\) and  \(\mathfrak{F}\) is a saturated formation of soluble groups such that \(\mathfrak{U} \subseteq \mathfrak{F}\). Here \(\mathfrak{U}\) is the formation of all supersoluble groups.
publisher Lugansk National Taras Shevchenko University
publishDate 2021
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1396
work_keys_str_mv AT trofimuka onaproductoftwoformationalmathrmtccsubgroups
first_indexed 2024-04-12T06:27:22Z
last_indexed 2024-04-12T06:27:22Z
_version_ 1796109245942333440