On the \(le\)-semigroups whose semigroup of bi-ideal elements is a normal band

It is well known that the semigroup \(\mathcal{B}(S)\) of all bi-ideal elements of an \(le\)-semigroup \(S\) is a band if and only if \(S\) is both regular and intra-regular. Here we show that \(\mathcal{B}(S)\) is a band if and only if it is a normal band and give a complete characterization of the...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Bhuniya, A. K., Kumbhakar, M.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2016
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/141
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-141
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-1412016-01-12T07:40:37Z On the \(le\)-semigroups whose semigroup of bi-ideal elements is a normal band Bhuniya, A. K. Kumbhakar, M. bi-ideal elements, duo; intra-regular, lattice-ordered semigroup, locally testable, normal band, regular 06F05 It is well known that the semigroup \(\mathcal{B}(S)\) of all bi-ideal elements of an \(le\)-semigroup \(S\) is a band if and only if \(S\) is both regular and intra-regular. Here we show that \(\mathcal{B}(S)\) is a band if and only if it is a normal band and give a complete characterization of the \(le\)-semigroups \(S\) for which the associated semigroup \(\mathcal{B}(S)\) is in each of the seven nontrivial subvarieties of normal bands. We also show that the set \(\mathcal{B}_{m}(S)\) of all minimal bi-ideal elements of \(S\) forms a rectangular band and that \(\mathcal{B}_{m}(S)\) is a bi-ideal of the semigroup~\(\mathcal{B(S)}\). Lugansk National Taras Shevchenko University 2016-01-12 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/141 Algebra and Discrete Mathematics; Vol 20, No 2 (2015) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/141/37 Copyright (c) 2016 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic bi-ideal elements
duo; intra-regular
lattice-ordered semigroup
locally testable
normal band
regular
06F05
spellingShingle bi-ideal elements
duo; intra-regular
lattice-ordered semigroup
locally testable
normal band
regular
06F05
Bhuniya, A. K.
Kumbhakar, M.
On the \(le\)-semigroups whose semigroup of bi-ideal elements is a normal band
topic_facet bi-ideal elements
duo; intra-regular
lattice-ordered semigroup
locally testable
normal band
regular
06F05
format Article
author Bhuniya, A. K.
Kumbhakar, M.
author_facet Bhuniya, A. K.
Kumbhakar, M.
author_sort Bhuniya, A. K.
title On the \(le\)-semigroups whose semigroup of bi-ideal elements is a normal band
title_short On the \(le\)-semigroups whose semigroup of bi-ideal elements is a normal band
title_full On the \(le\)-semigroups whose semigroup of bi-ideal elements is a normal band
title_fullStr On the \(le\)-semigroups whose semigroup of bi-ideal elements is a normal band
title_full_unstemmed On the \(le\)-semigroups whose semigroup of bi-ideal elements is a normal band
title_sort on the \(le\)-semigroups whose semigroup of bi-ideal elements is a normal band
description It is well known that the semigroup \(\mathcal{B}(S)\) of all bi-ideal elements of an \(le\)-semigroup \(S\) is a band if and only if \(S\) is both regular and intra-regular. Here we show that \(\mathcal{B}(S)\) is a band if and only if it is a normal band and give a complete characterization of the \(le\)-semigroups \(S\) for which the associated semigroup \(\mathcal{B}(S)\) is in each of the seven nontrivial subvarieties of normal bands. We also show that the set \(\mathcal{B}_{m}(S)\) of all minimal bi-ideal elements of \(S\) forms a rectangular band and that \(\mathcal{B}_{m}(S)\) is a bi-ideal of the semigroup~\(\mathcal{B(S)}\).
publisher Lugansk National Taras Shevchenko University
publishDate 2016
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/141
work_keys_str_mv AT bhuniyaak onthelesemigroupswhosesemigroupofbiidealelementsisanormalband
AT kumbhakarm onthelesemigroupswhosesemigroupofbiidealelementsisanormalband
first_indexed 2024-04-12T06:27:37Z
last_indexed 2024-04-12T06:27:37Z
_version_ 1796109246160437248