Gentle \(m\)-Calabi-Yau tilted algebras
We prove that all gentle 2-Calabi-Yau tilted algebras are Jacobian, moreover their bound quiver can be obtained via block decomposition. For two related families, the \(m\)-cluster-tilted algebras of type \(\mathbb{A}\) and \(\tilde{\mathbb{A}}\), we prove that a module \(M\) is stable Cohen-Macaula...
Збережено в:
Дата: | 2020 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2020
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1423 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозиторії
Algebra and Discrete Mathematicsid |
oai:ojs.admjournal.luguniv.edu.ua:article-1423 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-14232021-01-05T07:08:40Z Gentle \(m\)-Calabi-Yau tilted algebras Garcia Elsener, A. 2-Calabi-Yau tilted algebras, Jacobian algebras, Gentle algebras, derived category, Cohen-Macaulay modules, cluster-tilted algebras 16G20 We prove that all gentle 2-Calabi-Yau tilted algebras are Jacobian, moreover their bound quiver can be obtained via block decomposition. For two related families, the \(m\)-cluster-tilted algebras of type \(\mathbb{A}\) and \(\tilde{\mathbb{A}}\), we prove that a module \(M\) is stable Cohen-Macaulay if and only if \(\Omega^{m+1} \tau M \simeq M\). Lugansk National Taras Shevchenko University CONICET and PICT 2013-0799 ANPCyT 2020-12-30 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1423 10.12958/adm1423 Algebra and Discrete Mathematics; Vol 30, No 1 (2020) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1423/pdf Copyright (c) 2020 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
collection |
OJS |
language |
English |
topic |
2-Calabi-Yau tilted algebras Jacobian algebras Gentle algebras derived category Cohen-Macaulay modules cluster-tilted algebras 16G20 |
spellingShingle |
2-Calabi-Yau tilted algebras Jacobian algebras Gentle algebras derived category Cohen-Macaulay modules cluster-tilted algebras 16G20 Garcia Elsener, A. Gentle \(m\)-Calabi-Yau tilted algebras |
topic_facet |
2-Calabi-Yau tilted algebras Jacobian algebras Gentle algebras derived category Cohen-Macaulay modules cluster-tilted algebras 16G20 |
format |
Article |
author |
Garcia Elsener, A. |
author_facet |
Garcia Elsener, A. |
author_sort |
Garcia Elsener, A. |
title |
Gentle \(m\)-Calabi-Yau tilted algebras |
title_short |
Gentle \(m\)-Calabi-Yau tilted algebras |
title_full |
Gentle \(m\)-Calabi-Yau tilted algebras |
title_fullStr |
Gentle \(m\)-Calabi-Yau tilted algebras |
title_full_unstemmed |
Gentle \(m\)-Calabi-Yau tilted algebras |
title_sort |
gentle \(m\)-calabi-yau tilted algebras |
description |
We prove that all gentle 2-Calabi-Yau tilted algebras are Jacobian, moreover their bound quiver can be obtained via block decomposition. For two related families, the \(m\)-cluster-tilted algebras of type \(\mathbb{A}\) and \(\tilde{\mathbb{A}}\), we prove that a module \(M\) is stable Cohen-Macaulay if and only if \(\Omega^{m+1} \tau M \simeq M\). |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2020 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1423 |
work_keys_str_mv |
AT garciaelsenera gentlemcalabiyautiltedalgebras |
first_indexed |
2024-04-12T06:25:10Z |
last_indexed |
2024-04-12T06:25:10Z |
_version_ |
1796109216964935680 |