Interassociativity and three-element doppelsemigroups

In the paper  we characterize all interassociates of  some non-inverse semigroups and describe up to isomorphism all three-element (strong) doppelsemigroups and their automorphism groups. We prove that there exist 75 pairwise non-isomorphic three-element doppelsemigroups among which 41 doppelsemigro...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2020
Автори: Gavrylkiv, Volodymyr, Rendziak, Diana
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2020
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1427
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1427
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-14272020-02-10T19:12:26Z Interassociativity and three-element doppelsemigroups Gavrylkiv, Volodymyr Rendziak, Diana semigroup, interassociativity, doppelsemigroup, strong doppelsemigroup 08B20, 20M10, 20M50, 17A30 In the paper  we characterize all interassociates of  some non-inverse semigroups and describe up to isomorphism all three-element (strong) doppelsemigroups and their automorphism groups. We prove that there exist 75 pairwise non-isomorphic three-element doppelsemigroups among which 41 doppelsemigroups are commutative. Non-commutative doppelsemigroups are divided into 17 pairs of dual doppelsemigroups. Also up to isomorphism there are 65 strong doppelsemigroups of order 3, and all non-strong doppelsemigroups are not commutative. Lugansk National Taras Shevchenko University 2020-02-10 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1427 Algebra and Discrete Mathematics; Vol 28, No 2 (2019) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1427/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1427/640 Copyright (c) 2020 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic semigroup
interassociativity
doppelsemigroup
strong doppelsemigroup
08B20
20M10
20M50
17A30
spellingShingle semigroup
interassociativity
doppelsemigroup
strong doppelsemigroup
08B20
20M10
20M50
17A30
Gavrylkiv, Volodymyr
Rendziak, Diana
Interassociativity and three-element doppelsemigroups
topic_facet semigroup
interassociativity
doppelsemigroup
strong doppelsemigroup
08B20
20M10
20M50
17A30
format Article
author Gavrylkiv, Volodymyr
Rendziak, Diana
author_facet Gavrylkiv, Volodymyr
Rendziak, Diana
author_sort Gavrylkiv, Volodymyr
title Interassociativity and three-element doppelsemigroups
title_short Interassociativity and three-element doppelsemigroups
title_full Interassociativity and three-element doppelsemigroups
title_fullStr Interassociativity and three-element doppelsemigroups
title_full_unstemmed Interassociativity and three-element doppelsemigroups
title_sort interassociativity and three-element doppelsemigroups
description In the paper  we characterize all interassociates of  some non-inverse semigroups and describe up to isomorphism all three-element (strong) doppelsemigroups and their automorphism groups. We prove that there exist 75 pairwise non-isomorphic three-element doppelsemigroups among which 41 doppelsemigroups are commutative. Non-commutative doppelsemigroups are divided into 17 pairs of dual doppelsemigroups. Also up to isomorphism there are 65 strong doppelsemigroups of order 3, and all non-strong doppelsemigroups are not commutative.
publisher Lugansk National Taras Shevchenko University
publishDate 2020
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1427
work_keys_str_mv AT gavrylkivvolodymyr interassociativityandthreeelementdoppelsemigroups
AT rendziakdiana interassociativityandthreeelementdoppelsemigroups
first_indexed 2024-04-12T06:26:04Z
last_indexed 2024-04-12T06:26:04Z
_version_ 1796109148780232704