A note on Hall S-permutably embedded subgroups of finite groups

Let \(G\) be a finite group. Recall that a  subgroup \(A\) of \(G\) is said to  permute with a subgroup \(B\) if \(AB=BA\). A subgroup \(A\) of \(G\) is said to be \(S\)-quasinormal or \(S\)-permutable in \(G\)   if \(A\) permutes with all Sylow subgroups of \(G\). Recall also that \(H^{s G}\) is th...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автор: Sinitsa, Darya
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2017
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/148
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-148
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-1482017-07-02T21:58:40Z A note on Hall S-permutably embedded subgroups of finite groups Sinitsa, Darya \(S\)-permutable subgroup, Hall \(S\)-permutably embedded subgroup, \(S\)-permutable closure, Sylow subgroup, supersoluble group, maximal subgroup 20D10, 20D15, 20D30 Let \(G\) be a finite group. Recall that a  subgroup \(A\) of \(G\) is said to  permute with a subgroup \(B\) if \(AB=BA\). A subgroup \(A\) of \(G\) is said to be \(S\)-quasinormal or \(S\)-permutable in \(G\)   if \(A\) permutes with all Sylow subgroups of \(G\). Recall also that \(H^{s G}\) is the \(S\)-permutable closure of \(H\) in \(G\), that is, the intersection of all such \(S\)-permutable subgroups of \(G\) which contain \(H\). We say that \(H\) is Hall \(S\)-permutably embedded in \(G\) if \(H\) is a Hall subgroup of the \(S\)-permutable closure \( H^{s G} \) of \(H\) in \(G\). We prove that the  following conditions are equivalent: (1) every subgroup of \(G\) is Hall \(S\)-permutably embedded in \(G\); (2) the nilpotent residual  \(G^{\frak{N}}\)  of \(G\) is a Hall cyclic of square-free order subgroup of \(G\); (3) \(G = D \rtimes M\) is a split extension of a cyclic subgroup \(D\)  of square-free order by a nilpotent group \(M\), where \(M\) and \(D\) are both Hall subgroups of \(G\). Lugansk National Taras Shevchenko University 2017-07-03 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/148 Algebra and Discrete Mathematics; Vol 23, No 2 (2017) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/148/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/148/43 Copyright (c) 2017 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic \(S\)-permutable subgroup
Hall \(S\)-permutably embedded subgroup
\(S\)-permutable closure
Sylow subgroup
supersoluble group
maximal subgroup
20D10
20D15
20D30
spellingShingle \(S\)-permutable subgroup
Hall \(S\)-permutably embedded subgroup
\(S\)-permutable closure
Sylow subgroup
supersoluble group
maximal subgroup
20D10
20D15
20D30
Sinitsa, Darya
A note on Hall S-permutably embedded subgroups of finite groups
topic_facet \(S\)-permutable subgroup
Hall \(S\)-permutably embedded subgroup
\(S\)-permutable closure
Sylow subgroup
supersoluble group
maximal subgroup
20D10
20D15
20D30
format Article
author Sinitsa, Darya
author_facet Sinitsa, Darya
author_sort Sinitsa, Darya
title A note on Hall S-permutably embedded subgroups of finite groups
title_short A note on Hall S-permutably embedded subgroups of finite groups
title_full A note on Hall S-permutably embedded subgroups of finite groups
title_fullStr A note on Hall S-permutably embedded subgroups of finite groups
title_full_unstemmed A note on Hall S-permutably embedded subgroups of finite groups
title_sort note on hall s-permutably embedded subgroups of finite groups
description Let \(G\) be a finite group. Recall that a  subgroup \(A\) of \(G\) is said to  permute with a subgroup \(B\) if \(AB=BA\). A subgroup \(A\) of \(G\) is said to be \(S\)-quasinormal or \(S\)-permutable in \(G\)   if \(A\) permutes with all Sylow subgroups of \(G\). Recall also that \(H^{s G}\) is the \(S\)-permutable closure of \(H\) in \(G\), that is, the intersection of all such \(S\)-permutable subgroups of \(G\) which contain \(H\). We say that \(H\) is Hall \(S\)-permutably embedded in \(G\) if \(H\) is a Hall subgroup of the \(S\)-permutable closure \( H^{s G} \) of \(H\) in \(G\). We prove that the  following conditions are equivalent: (1) every subgroup of \(G\) is Hall \(S\)-permutably embedded in \(G\); (2) the nilpotent residual  \(G^{\frak{N}}\)  of \(G\) is a Hall cyclic of square-free order subgroup of \(G\); (3) \(G = D \rtimes M\) is a split extension of a cyclic subgroup \(D\)  of square-free order by a nilpotent group \(M\), where \(M\) and \(D\) are both Hall subgroups of \(G\).
publisher Lugansk National Taras Shevchenko University
publishDate 2017
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/148
work_keys_str_mv AT sinitsadarya anoteonhallspermutablyembeddedsubgroupsoffinitegroups
AT sinitsadarya noteonhallspermutablyembeddedsubgroupsoffinitegroups
first_indexed 2024-04-12T06:26:04Z
last_indexed 2024-04-12T06:26:04Z
_version_ 1796109149132554240