Mappings preserving sum of products \(a\circ b+ba^{*}\) on factor von Neumann algebras
Let \(\mathcal{A}\) and \(\mathcal{B}\) be two factor von Neumann algebras. In this paper, we proved that a bijective mapping \(\Phi :\mathcal{A}\rightarrow \mathcal{B}\) satisfies \(\Phi (a\circ b+ba^{*})=\Phi (a)\circ \Phi (b)+\Phi (b)\Phi (a)^{*}\) (where \(\circ \) is the special Jordan product...
Saved in:
| Date: | 2021 |
|---|---|
| Main Authors: | , |
| Format: | Article |
| Language: | English |
| Published: |
Lugansk National Taras Shevchenko University
2021
|
| Subjects: | |
| Online Access: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1482 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| Summary: | Let \(\mathcal{A}\) and \(\mathcal{B}\) be two factor von Neumann algebras. In this paper, we proved that a bijective mapping \(\Phi :\mathcal{A}\rightarrow \mathcal{B}\) satisfies \(\Phi (a\circ b+ba^{*})=\Phi (a)\circ \Phi (b)+\Phi (b)\Phi (a)^{*}\) (where \(\circ \) is the special Jordan product on \(\mathcal{A}\) and \(\mathcal{B},\) respectively), for all elements \(a,b\in \mathcal{A}\), if and only if \(\Phi \) is a \(\ast \)-ring isomorphism. In particular, if the von Neumann algebras \(\mathcal{A}\) and \(\mathcal{B}\) are type I factors, then \(\Phi \) is a unitary isomorphism or a conjugate unitary isomorphism. |
|---|