2025-02-22T09:47:35-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22oai%3Aojs.admjournal.luguniv.edu.ua%3Aarticle-1494%22&qt=morelikethis&rows=5
2025-02-22T09:47:35-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22oai%3Aojs.admjournal.luguniv.edu.ua%3Aarticle-1494%22&qt=morelikethis&rows=5
2025-02-22T09:47:35-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T09:47:35-05:00 DEBUG: Deserialized SOLR response
Zero-sum subsets of decomposable sets in Abelian groups
A subset \(D\) of an abelian group is decomposable if \( \emptyset\ne D\subset D+D\). In the paper we give partial answers to an open problem asking whether every finite decomposable subset \(D\) of an abelian group contains a non-empty subset \(Z\subset D\) with \(\sum Z=0\). For every \(n\in\mathb...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Lugansk National Taras Shevchenko University
2020
|
Subjects: | |
Online Access: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1494 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A subset \(D\) of an abelian group is decomposable if \( \emptyset\ne D\subset D+D\). In the paper we give partial answers to an open problem asking whether every finite decomposable subset \(D\) of an abelian group contains a non-empty subset \(Z\subset D\) with \(\sum Z=0\). For every \(n\in\mathbb{N}\) we present a decomposable subset \(D\) of cardinality \(|D|=n\) in the cyclic group of order \(2^n-1\) such that \(\sum D=0\), but \(\sum T\ne 0\) for any proper non-empty subset \(T\subset D\). On the other hand, we prove that every decomposable subset \(D\subset\mathbb{R}\) of cardinality \(|D|\le 7\) contains a non-empty subset \(T\subset D\) of cardinality \(|Z|\le\frac12|D|\) with \(\sum Z=0\). For every \(n\in\mathbb{N}\) we present a subset \(D\subset\mathbb{Z}\) of cardinality \(|D|=2n\) such that \(\sum Z=0\) for some subset \(Z\subset D\) of cardinality \(|Z|=n\) and \(\sum T\ne 0\) for any non-empty subset \(T\subset D\) of cardinality \(|T|<n=\frac12|D|\). Also we prove that every finite decomposable subset \(D\) of an Abelian group contains two non-empty subsets \(A,B\) such that \(\sum A+\sum B=0\). |
---|