Zero-sum subsets of decomposable sets in Abelian groups

A subset \(D\) of an abelian group is decomposable if \( \emptyset\ne D\subset D+D\). In the paper we give partial answers to an open problem asking whether every finite decomposable subset \(D\) of an abelian group contains a non-empty subset \(Z\subset D\) with \(\sum Z=0\). For every \(n\in\mathb...

Full description

Saved in:
Bibliographic Details
Date:2020
Main Authors: Banakh, T., Ravsky, A.
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2020
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1494
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1494
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-14942021-01-03T08:39:36Z Zero-sum subsets of decomposable sets in Abelian groups Banakh, T. Ravsky, A. decomposable set, abelian group, sum-set 05E15 A subset \(D\) of an abelian group is decomposable if \( \emptyset\ne D\subset D+D\). In the paper we give partial answers to an open problem asking whether every finite decomposable subset \(D\) of an abelian group contains a non-empty subset \(Z\subset D\) with \(\sum Z=0\). For every \(n\in\mathbb{N}\) we present a decomposable subset \(D\) of cardinality \(|D|=n\) in the cyclic group of order \(2^n-1\) such that \(\sum D=0\), but \(\sum T\ne 0\) for any proper non-empty subset \(T\subset D\). On the other hand, we prove that every decomposable subset \(D\subset\mathbb{R}\) of cardinality \(|D|\le 7\) contains a non-empty subset \(T\subset D\) of cardinality \(|Z|\le\frac12|D|\) with \(\sum Z=0\). For every \(n\in\mathbb{N}\) we present a subset \(D\subset\mathbb{Z}\) of cardinality \(|D|=2n\) such that \(\sum Z=0\) for some subset \(Z\subset D\) of cardinality \(|Z|=n\) and \(\sum T\ne 0\) for any non-empty subset \(T\subset D\) of cardinality \(|T|<n=\frac12|D|\). Also we prove that every finite decomposable subset \(D\) of an Abelian group contains two non-empty subsets \(A,B\) such that \(\sum A+\sum B=0\). Lugansk National Taras Shevchenko University 2020-12-30 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1494 10.12958/adm1494 Algebra and Discrete Mathematics; Vol 30, No 1 (2020) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1494/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1494/619 Copyright (c) 2020 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2021-01-03T08:39:36Z
collection OJS
language English
topic decomposable set
abelian group
sum-set
05E15
spellingShingle decomposable set
abelian group
sum-set
05E15
Banakh, T.
Ravsky, A.
Zero-sum subsets of decomposable sets in Abelian groups
topic_facet decomposable set
abelian group
sum-set
05E15
format Article
author Banakh, T.
Ravsky, A.
author_facet Banakh, T.
Ravsky, A.
author_sort Banakh, T.
title Zero-sum subsets of decomposable sets in Abelian groups
title_short Zero-sum subsets of decomposable sets in Abelian groups
title_full Zero-sum subsets of decomposable sets in Abelian groups
title_fullStr Zero-sum subsets of decomposable sets in Abelian groups
title_full_unstemmed Zero-sum subsets of decomposable sets in Abelian groups
title_sort zero-sum subsets of decomposable sets in abelian groups
description A subset \(D\) of an abelian group is decomposable if \( \emptyset\ne D\subset D+D\). In the paper we give partial answers to an open problem asking whether every finite decomposable subset \(D\) of an abelian group contains a non-empty subset \(Z\subset D\) with \(\sum Z=0\). For every \(n\in\mathbb{N}\) we present a decomposable subset \(D\) of cardinality \(|D|=n\) in the cyclic group of order \(2^n-1\) such that \(\sum D=0\), but \(\sum T\ne 0\) for any proper non-empty subset \(T\subset D\). On the other hand, we prove that every decomposable subset \(D\subset\mathbb{R}\) of cardinality \(|D|\le 7\) contains a non-empty subset \(T\subset D\) of cardinality \(|Z|\le\frac12|D|\) with \(\sum Z=0\). For every \(n\in\mathbb{N}\) we present a subset \(D\subset\mathbb{Z}\) of cardinality \(|D|=2n\) such that \(\sum Z=0\) for some subset \(Z\subset D\) of cardinality \(|Z|=n\) and \(\sum T\ne 0\) for any non-empty subset \(T\subset D\) of cardinality \(|T|<n=\frac12|D|\). Also we prove that every finite decomposable subset \(D\) of an Abelian group contains two non-empty subsets \(A,B\) such that \(\sum A+\sum B=0\).
publisher Lugansk National Taras Shevchenko University
publishDate 2020
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1494
work_keys_str_mv AT banakht zerosumsubsetsofdecomposablesetsinabeliangroups
AT ravskya zerosumsubsetsofdecomposablesetsinabeliangroups
first_indexed 2025-07-17T10:30:59Z
last_indexed 2025-07-17T10:30:59Z
_version_ 1837890132262256640