A new characterization of finite \(\sigma\)-soluble \(P\sigma T\)-groups

Let \(\sigma =\{\sigma_{i} \mid i\in I\}\) be a partition of the set of all primes \(\mathbb{P}\) and \(G\) a finite group. \(G\) is said to be \emph{\(\sigma\)-soluble} if every chief factor \(H/K\) of \(G\) is a \(\sigma_{i}\)-group for some \(i=i(H/K)\). A set \({\mathcal H}\) of subgroups of \(G...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2020
Автор: Adarchenko, N. M.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2020
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1530
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1530
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-15302020-05-14T18:27:22Z A new characterization of finite \(\sigma\)-soluble \(P\sigma T\)-groups Adarchenko, N. M. finite group, \(\sigma\)-permutable subgroup, \(P\sigma T\)-group, \(\sigma\)-soluble group, \(\sigma\)-nilpotent group 20D10, 20D15, 20D30 Let \(\sigma =\{\sigma_{i} \mid i\in I\}\) be a partition of the set of all primes \(\mathbb{P}\) and \(G\) a finite group. \(G\) is said to be \emph{\(\sigma\)-soluble} if every chief factor \(H/K\) of \(G\) is a \(\sigma_{i}\)-group for some \(i=i(H/K)\). A set \({\mathcal H}\) of subgroups of \(G\) is said to be a complete Hall \(\sigma \)-set of \(G\) if every member \(\ne 1\) of \({\mathcal H}\) is a Hall \(\sigma_{i}\)-subgroup of \(G\) for some \(\sigma_{i}\in \sigma \) and \({\mathcal H}\) contains exactly one Hall \(\sigma_{i}\)-subgroup of \(G\) for every \(i\) such that \(\sigma_{i}\cap \pi (G)\ne \varnothing\). A subgroup \(A\) of \(G\) is said to be \({\sigma}\)-quasinormal or \({\sigma}\)-permutable in \(G\) if \(G\) has a complete Hall \(\sigma\)-set \(\mathcal H\) such that \(AH^{x}=H^{x}A\) for all \(x\in G\) and all \(H\in \mathcal H\). We obtain a new characterization of finite \(\sigma\)-soluble groups \(G\) in which \(\sigma\)-permutability is a transitive relation in \(G\). Lugansk National Taras Shevchenko University 2020-05-14 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1530 10.12958/adm1530 Algebra and Discrete Mathematics; Vol 29, No 1 (2020) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1530/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1530/656 Copyright (c) 2020 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic finite group
\(\sigma\)-permutable subgroup
\(P\sigma T\)-group
\(\sigma\)-soluble group
\(\sigma\)-nilpotent group
20D10
20D15
20D30
spellingShingle finite group
\(\sigma\)-permutable subgroup
\(P\sigma T\)-group
\(\sigma\)-soluble group
\(\sigma\)-nilpotent group
20D10
20D15
20D30
Adarchenko, N. M.
A new characterization of finite \(\sigma\)-soluble \(P\sigma T\)-groups
topic_facet finite group
\(\sigma\)-permutable subgroup
\(P\sigma T\)-group
\(\sigma\)-soluble group
\(\sigma\)-nilpotent group
20D10
20D15
20D30
format Article
author Adarchenko, N. M.
author_facet Adarchenko, N. M.
author_sort Adarchenko, N. M.
title A new characterization of finite \(\sigma\)-soluble \(P\sigma T\)-groups
title_short A new characterization of finite \(\sigma\)-soluble \(P\sigma T\)-groups
title_full A new characterization of finite \(\sigma\)-soluble \(P\sigma T\)-groups
title_fullStr A new characterization of finite \(\sigma\)-soluble \(P\sigma T\)-groups
title_full_unstemmed A new characterization of finite \(\sigma\)-soluble \(P\sigma T\)-groups
title_sort new characterization of finite \(\sigma\)-soluble \(p\sigma t\)-groups
description Let \(\sigma =\{\sigma_{i} \mid i\in I\}\) be a partition of the set of all primes \(\mathbb{P}\) and \(G\) a finite group. \(G\) is said to be \emph{\(\sigma\)-soluble} if every chief factor \(H/K\) of \(G\) is a \(\sigma_{i}\)-group for some \(i=i(H/K)\). A set \({\mathcal H}\) of subgroups of \(G\) is said to be a complete Hall \(\sigma \)-set of \(G\) if every member \(\ne 1\) of \({\mathcal H}\) is a Hall \(\sigma_{i}\)-subgroup of \(G\) for some \(\sigma_{i}\in \sigma \) and \({\mathcal H}\) contains exactly one Hall \(\sigma_{i}\)-subgroup of \(G\) for every \(i\) such that \(\sigma_{i}\cap \pi (G)\ne \varnothing\). A subgroup \(A\) of \(G\) is said to be \({\sigma}\)-quasinormal or \({\sigma}\)-permutable in \(G\) if \(G\) has a complete Hall \(\sigma\)-set \(\mathcal H\) such that \(AH^{x}=H^{x}A\) for all \(x\in G\) and all \(H\in \mathcal H\). We obtain a new characterization of finite \(\sigma\)-soluble groups \(G\) in which \(\sigma\)-permutability is a transitive relation in \(G\).
publisher Lugansk National Taras Shevchenko University
publishDate 2020
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1530
work_keys_str_mv AT adarchenkonm anewcharacterizationoffinitesigmasolublepsigmatgroups
AT adarchenkonm newcharacterizationoffinitesigmasolublepsigmatgroups
first_indexed 2024-04-12T06:25:11Z
last_indexed 2024-04-12T06:25:11Z
_version_ 1796109217282654208