A new characterization of finite \(\sigma\)-soluble \(P\sigma T\)-groups
Let \(\sigma =\{\sigma_{i} \mid i\in I\}\) be a partition of the set of all primes \(\mathbb{P}\) and \(G\) a finite group. \(G\) is said to be \emph{\(\sigma\)-soluble} if every chief factor \(H/K\) of \(G\) is a \(\sigma_{i}\)-group for some \(i=i(H/K)\). A set \({\mathcal H}\) of subgroups of \(G...
Збережено в:
Дата: | 2020 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2020
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1530 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematicsid |
oai:ojs.admjournal.luguniv.edu.ua:article-1530 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-15302020-05-14T18:27:22Z A new characterization of finite \(\sigma\)-soluble \(P\sigma T\)-groups Adarchenko, N. M. finite group, \(\sigma\)-permutable subgroup, \(P\sigma T\)-group, \(\sigma\)-soluble group, \(\sigma\)-nilpotent group 20D10, 20D15, 20D30 Let \(\sigma =\{\sigma_{i} \mid i\in I\}\) be a partition of the set of all primes \(\mathbb{P}\) and \(G\) a finite group. \(G\) is said to be \emph{\(\sigma\)-soluble} if every chief factor \(H/K\) of \(G\) is a \(\sigma_{i}\)-group for some \(i=i(H/K)\). A set \({\mathcal H}\) of subgroups of \(G\) is said to be a complete Hall \(\sigma \)-set of \(G\) if every member \(\ne 1\) of \({\mathcal H}\) is a Hall \(\sigma_{i}\)-subgroup of \(G\) for some \(\sigma_{i}\in \sigma \) and \({\mathcal H}\) contains exactly one Hall \(\sigma_{i}\)-subgroup of \(G\) for every \(i\) such that \(\sigma_{i}\cap \pi (G)\ne \varnothing\). A subgroup \(A\) of \(G\) is said to be \({\sigma}\)-quasinormal or \({\sigma}\)-permutable in \(G\) if \(G\) has a complete Hall \(\sigma\)-set \(\mathcal H\) such that \(AH^{x}=H^{x}A\) for all \(x\in G\) and all \(H\in \mathcal H\). We obtain a new characterization of finite \(\sigma\)-soluble groups \(G\) in which \(\sigma\)-permutability is a transitive relation in \(G\). Lugansk National Taras Shevchenko University 2020-05-14 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1530 10.12958/adm1530 Algebra and Discrete Mathematics; Vol 29, No 1 (2020) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1530/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1530/656 Copyright (c) 2020 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
collection |
OJS |
language |
English |
topic |
finite group \(\sigma\)-permutable subgroup \(P\sigma T\)-group \(\sigma\)-soluble group \(\sigma\)-nilpotent group 20D10 20D15 20D30 |
spellingShingle |
finite group \(\sigma\)-permutable subgroup \(P\sigma T\)-group \(\sigma\)-soluble group \(\sigma\)-nilpotent group 20D10 20D15 20D30 Adarchenko, N. M. A new characterization of finite \(\sigma\)-soluble \(P\sigma T\)-groups |
topic_facet |
finite group \(\sigma\)-permutable subgroup \(P\sigma T\)-group \(\sigma\)-soluble group \(\sigma\)-nilpotent group 20D10 20D15 20D30 |
format |
Article |
author |
Adarchenko, N. M. |
author_facet |
Adarchenko, N. M. |
author_sort |
Adarchenko, N. M. |
title |
A new characterization of finite \(\sigma\)-soluble \(P\sigma T\)-groups |
title_short |
A new characterization of finite \(\sigma\)-soluble \(P\sigma T\)-groups |
title_full |
A new characterization of finite \(\sigma\)-soluble \(P\sigma T\)-groups |
title_fullStr |
A new characterization of finite \(\sigma\)-soluble \(P\sigma T\)-groups |
title_full_unstemmed |
A new characterization of finite \(\sigma\)-soluble \(P\sigma T\)-groups |
title_sort |
new characterization of finite \(\sigma\)-soluble \(p\sigma t\)-groups |
description |
Let \(\sigma =\{\sigma_{i} \mid i\in I\}\) be a partition of the set of all primes \(\mathbb{P}\) and \(G\) a finite group. \(G\) is said to be \emph{\(\sigma\)-soluble} if every chief factor \(H/K\) of \(G\) is a \(\sigma_{i}\)-group for some \(i=i(H/K)\). A set \({\mathcal H}\) of subgroups of \(G\) is said to be a complete Hall \(\sigma \)-set of \(G\) if every member \(\ne 1\) of \({\mathcal H}\) is a Hall \(\sigma_{i}\)-subgroup of \(G\) for some \(\sigma_{i}\in \sigma \) and \({\mathcal H}\) contains exactly one Hall \(\sigma_{i}\)-subgroup of \(G\) for every \(i\) such that \(\sigma_{i}\cap \pi (G)\ne \varnothing\). A subgroup \(A\) of \(G\) is said to be \({\sigma}\)-quasinormal or \({\sigma}\)-permutable in \(G\) if \(G\) has a complete Hall \(\sigma\)-set \(\mathcal H\) such that \(AH^{x}=H^{x}A\) for all \(x\in G\) and all \(H\in \mathcal H\). We obtain a new characterization of finite \(\sigma\)-soluble groups \(G\) in which \(\sigma\)-permutability is a transitive relation in \(G\). |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2020 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1530 |
work_keys_str_mv |
AT adarchenkonm anewcharacterizationoffinitesigmasolublepsigmatgroups AT adarchenkonm newcharacterizationoffinitesigmasolublepsigmatgroups |
first_indexed |
2024-04-12T06:25:11Z |
last_indexed |
2024-04-12T06:25:11Z |
_version_ |
1796109217282654208 |