On the structure of Leibniz algebras whose subalgebras are ideals or core-free

An algebra \(L\) over a field \(F\) is said to be a Leibniz algebra (more precisely, a left Leibniz algebra) if it satisfies the Leibniz identity: \([[a, b], c] = [a, [b, c]] - [b, [a, c]]\) for all \(a, b, c \in L\). Leibniz algebras are generalizations of Lie algebras. A subalgebra \(S\) of a Leib...

Full description

Saved in:
Bibliographic Details
Date:2020
Main Authors: Chupordia, V. A., Kurdachenko, L. A., Semko, N. N.
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2020
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1533
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1533
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-15332020-07-08T07:13:20Z On the structure of Leibniz algebras whose subalgebras are ideals or core-free Chupordia, V. A. Kurdachenko, L. A. Semko, N. N. 17A32, 17A60, 17A99 An algebra \(L\) over a field \(F\) is said to be a Leibniz algebra (more precisely, a left Leibniz algebra) if it satisfies the Leibniz identity: \([[a, b], c] = [a, [b, c]] - [b, [a, c]]\) for all \(a, b, c \in L\). Leibniz algebras are generalizations of Lie algebras. A subalgebra \(S\) of a Leibniz algebra \(L\) is called a core-free, if \(S\) does not include a non-zero ideal. We study the Leibniz algebras, whose subalgebras are either ideals or core-free. Lugansk National Taras Shevchenko University Leibniz algebra, Lie algebra, ideal, core-free subalgebras, monolithic algebra, extraspecial algebra 2020-07-08 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1533 10.12958/adm1533 Algebra and Discrete Mathematics; Vol 29, No 2 (2020) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1533/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1533/659 Copyright (c) 2020 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2020-07-08T07:13:20Z
collection OJS
language English
topic
17A32
17A60
17A99
spellingShingle
17A32
17A60
17A99
Chupordia, V. A.
Kurdachenko, L. A.
Semko, N. N.
On the structure of Leibniz algebras whose subalgebras are ideals or core-free
topic_facet
17A32
17A60
17A99
format Article
author Chupordia, V. A.
Kurdachenko, L. A.
Semko, N. N.
author_facet Chupordia, V. A.
Kurdachenko, L. A.
Semko, N. N.
author_sort Chupordia, V. A.
title On the structure of Leibniz algebras whose subalgebras are ideals or core-free
title_short On the structure of Leibniz algebras whose subalgebras are ideals or core-free
title_full On the structure of Leibniz algebras whose subalgebras are ideals or core-free
title_fullStr On the structure of Leibniz algebras whose subalgebras are ideals or core-free
title_full_unstemmed On the structure of Leibniz algebras whose subalgebras are ideals or core-free
title_sort on the structure of leibniz algebras whose subalgebras are ideals or core-free
description An algebra \(L\) over a field \(F\) is said to be a Leibniz algebra (more precisely, a left Leibniz algebra) if it satisfies the Leibniz identity: \([[a, b], c] = [a, [b, c]] - [b, [a, c]]\) for all \(a, b, c \in L\). Leibniz algebras are generalizations of Lie algebras. A subalgebra \(S\) of a Leibniz algebra \(L\) is called a core-free, if \(S\) does not include a non-zero ideal. We study the Leibniz algebras, whose subalgebras are either ideals or core-free.
publisher Lugansk National Taras Shevchenko University
publishDate 2020
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1533
work_keys_str_mv AT chupordiava onthestructureofleibnizalgebraswhosesubalgebrasareidealsorcorefree
AT kurdachenkola onthestructureofleibnizalgebraswhosesubalgebrasareidealsorcorefree
AT semkonn onthestructureofleibnizalgebraswhosesubalgebrasareidealsorcorefree
first_indexed 2025-07-17T10:31:56Z
last_indexed 2025-07-17T10:31:56Z
_version_ 1837889818778927104