Morita equivalent unital locally matrix algebras

We describe Morita equivalence of unital locally matrix algebras in terms of their Steinitz parametrization. Two countable-dimensional unital locally matrix algebras are Morita equivalent if and only if their Steinitz numbers are rationally connected. For an arbitrary uncountable dimension \(\alpha\...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2020
Автори: Bezushchak, O., Oliynyk, B.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2020
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1545
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:We describe Morita equivalence of unital locally matrix algebras in terms of their Steinitz parametrization. Two countable-dimensional unital locally matrix algebras are Morita equivalent if and only if their Steinitz numbers are rationally connected. For an arbitrary uncountable dimension \(\alpha\) and an arbitrary not locally finite Steinitz number \(s\) there exist unital locally matrix algebras \(A\), \(B\) such that \(\dim_{F}A=\dim_{F}B=\alpha\), \(\mathbf{st}(A)=\mathbf{st}(B)=s\), however, the algebras \(A\), \(B\) are not Morita equivalent.