An elementary description of \(K_1(R)\) without elementary matrices

Let \(R\) be a ring with unit. Passing to the colimit with respect to the standard inclusions \(\mathrm{GL}(n,R) \to \mathrm{GL}(n+1,R)\) (which add a unit vector as new last row and column) yields, by definition, the stable linear group \(\mathrm{GL}(R)\); the same result is obtained, up to isomorp...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2020
Автори: Hüttemann, T., Zhang, Z.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2020
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1568
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1568
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-15682021-01-04T06:22:04Z An elementary description of \(K_1(R)\) without elementary matrices Hüttemann, T. Zhang, Z. \(K\)-theory, invertible matrix, elementary matrix Primary 19B99; Secondary 16E20 Let \(R\) be a ring with unit. Passing to the colimit with respect to the standard inclusions \(\mathrm{GL}(n,R) \to \mathrm{GL}(n+1,R)\) (which add a unit vector as new last row and column) yields, by definition, the stable linear group \(\mathrm{GL}(R)\); the same result is obtained, up to isomorphism, when using the `opposite' inclusions (which add a unit vector as new first row and column). In this note it is shown that passing to the colimit along both these families of inclusions simultaneously recovers the algebraic \(K\)-group \(K_1(R) = \mathrm{GL}(R)/E(R)\) of \(R\), giving an elementary description that does not involve elementary matrices explicitly. Lugansk National Taras Shevchenko University 2020-12-30 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1568 10.12958/adm1568 Algebra and Discrete Mathematics; Vol 30, No 1 (2020) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1568/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1568/684 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1568/726 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1568/727 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1568/728 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1568/729 Copyright (c) 2020 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2021-01-04T06:22:04Z
collection OJS
language English
topic \(K\)-theory
invertible matrix
elementary matrix
Primary 19B99
Secondary 16E20
spellingShingle \(K\)-theory
invertible matrix
elementary matrix
Primary 19B99
Secondary 16E20
Hüttemann, T.
Zhang, Z.
An elementary description of \(K_1(R)\) without elementary matrices
topic_facet \(K\)-theory
invertible matrix
elementary matrix
Primary 19B99
Secondary 16E20
format Article
author Hüttemann, T.
Zhang, Z.
author_facet Hüttemann, T.
Zhang, Z.
author_sort Hüttemann, T.
title An elementary description of \(K_1(R)\) without elementary matrices
title_short An elementary description of \(K_1(R)\) without elementary matrices
title_full An elementary description of \(K_1(R)\) without elementary matrices
title_fullStr An elementary description of \(K_1(R)\) without elementary matrices
title_full_unstemmed An elementary description of \(K_1(R)\) without elementary matrices
title_sort elementary description of \(k_1(r)\) without elementary matrices
description Let \(R\) be a ring with unit. Passing to the colimit with respect to the standard inclusions \(\mathrm{GL}(n,R) \to \mathrm{GL}(n+1,R)\) (which add a unit vector as new last row and column) yields, by definition, the stable linear group \(\mathrm{GL}(R)\); the same result is obtained, up to isomorphism, when using the `opposite' inclusions (which add a unit vector as new first row and column). In this note it is shown that passing to the colimit along both these families of inclusions simultaneously recovers the algebraic \(K\)-group \(K_1(R) = \mathrm{GL}(R)/E(R)\) of \(R\), giving an elementary description that does not involve elementary matrices explicitly.
publisher Lugansk National Taras Shevchenko University
publishDate 2020
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1568
work_keys_str_mv AT huttemannt anelementarydescriptionofk1rwithoutelementarymatrices
AT zhangz anelementarydescriptionofk1rwithoutelementarymatrices
AT huttemannt elementarydescriptionofk1rwithoutelementarymatrices
AT zhangz elementarydescriptionofk1rwithoutelementarymatrices
first_indexed 2025-07-17T10:33:27Z
last_indexed 2025-07-17T10:33:27Z
_version_ 1837889914770817024