Normal form in Hecke-Kiselman monoids associated with simple oriented graphs

We generalize Kudryavtseva and Mazorchuk's concept of a canonical form of elements [9] in Kiselman's semigroups to the setting of a Hecke-Kiselman monoid \(\mathbf{HK}_\Gamma\) associated with a simple oriented graph \(\Gamma\). We use confluence properties from [7] to associate with each...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2021
Автори: Aragona, R., D'Andrea, A.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2021
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1571
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:We generalize Kudryavtseva and Mazorchuk's concept of a canonical form of elements [9] in Kiselman's semigroups to the setting of a Hecke-Kiselman monoid \(\mathbf{HK}_\Gamma\) associated with a simple oriented graph \(\Gamma\). We use confluence properties from [7] to associate with each element in \(\mathbf{HK}_\Gamma\) a normal form; normal forms are not unique, and we show that they can be obtained from each other by a sequence of elementary commutations. We finally describe a general procedure to recover a (unique) lexicographically minimal normal form.