Normal form in Hecke-Kiselman monoids associated with simple oriented graphs
We generalize Kudryavtseva and Mazorchuk's concept of a canonical form of elements [9] in Kiselman's semigroups to the setting of a Hecke-Kiselman monoid \(\mathbf{HK}_\Gamma\) associated with a simple oriented graph \(\Gamma\). We use confluence properties from [7] to associate with each...
Збережено в:
| Дата: | 2021 |
|---|---|
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2021
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1571 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| Резюме: | We generalize Kudryavtseva and Mazorchuk's concept of a canonical form of elements [9] in Kiselman's semigroups to the setting of a Hecke-Kiselman monoid \(\mathbf{HK}_\Gamma\) associated with a simple oriented graph \(\Gamma\). We use confluence properties from [7] to associate with each element in \(\mathbf{HK}_\Gamma\) a normal form; normal forms are not unique, and we show that they can be obtained from each other by a sequence of elementary commutations. We finally describe a general procedure to recover a (unique) lexicographically minimal normal form. |
|---|