An identity on automorphisms of Lie ideals in prime rings

In the present paper it is shown that a prime ring \(R\) with center \(Z\) satisfies \(s_4\), the standard identity in four variables if \(R\) admits a non-identity automorphism \(\sigma\) such that \( [u, v] - u^{m}[u^\sigma,u]^nu^\sigma\in Z\) for all \(u\) in some noncentral ideal \(L\) of \(R\),...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2022
Автор: Rehmam, N.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2022
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1612
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1612
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-16122022-10-14T16:01:17Z An identity on automorphisms of Lie ideals in prime rings Rehmam, N. prime ring, automorphisms; maximal right ring of quotients, generalized polynomial identity 16N60, 16W20, 16R50 In the present paper it is shown that a prime ring \(R\) with center \(Z\) satisfies \(s_4\), the standard identity in four variables if \(R\) admits a non-identity automorphism \(\sigma\) such that \( [u, v] - u^{m}[u^\sigma,u]^nu^\sigma\in Z\) for all \(u\) in some noncentral ideal \(L\) of \(R\), whenever \(\operatorname{char}(R)>n+m\) or \(\operatorname{char}(R)=0\), where \(n\)  and \(m\) are fixed positive integer. Lugansk National Taras Shevchenko University 2022-10-14 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1612 10.12958/adm1612 Algebra and Discrete Mathematics; Vol 33, No 2 (2022) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1612/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1612/716 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1612/1009 Copyright (c) 2022 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic prime ring
automorphisms; maximal right ring of quotients
generalized polynomial identity
16N60
16W20
16R50
spellingShingle prime ring
automorphisms; maximal right ring of quotients
generalized polynomial identity
16N60
16W20
16R50
Rehmam, N.
An identity on automorphisms of Lie ideals in prime rings
topic_facet prime ring
automorphisms; maximal right ring of quotients
generalized polynomial identity
16N60
16W20
16R50
format Article
author Rehmam, N.
author_facet Rehmam, N.
author_sort Rehmam, N.
title An identity on automorphisms of Lie ideals in prime rings
title_short An identity on automorphisms of Lie ideals in prime rings
title_full An identity on automorphisms of Lie ideals in prime rings
title_fullStr An identity on automorphisms of Lie ideals in prime rings
title_full_unstemmed An identity on automorphisms of Lie ideals in prime rings
title_sort identity on automorphisms of lie ideals in prime rings
description In the present paper it is shown that a prime ring \(R\) with center \(Z\) satisfies \(s_4\), the standard identity in four variables if \(R\) admits a non-identity automorphism \(\sigma\) such that \( [u, v] - u^{m}[u^\sigma,u]^nu^\sigma\in Z\) for all \(u\) in some noncentral ideal \(L\) of \(R\), whenever \(\operatorname{char}(R)>n+m\) or \(\operatorname{char}(R)=0\), where \(n\)  and \(m\) are fixed positive integer.
publisher Lugansk National Taras Shevchenko University
publishDate 2022
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1612
work_keys_str_mv AT rehmamn anidentityonautomorphismsoflieidealsinprimerings
AT rehmamn identityonautomorphismsoflieidealsinprimerings
first_indexed 2024-04-12T06:27:23Z
last_indexed 2024-04-12T06:27:23Z
_version_ 1796109247016075264