An identity on automorphisms of Lie ideals in prime rings
In the present paper it is shown that a prime ring \(R\) with center \(Z\) satisfies \(s_4\), the standard identity in four variables if \(R\) admits a non-identity automorphism \(\sigma\) such that \( [u, v] - u^{m}[u^\sigma,u]^nu^\sigma\in Z\) for all \(u\) in some noncentral ideal \(L\) of \(R\),...
Збережено в:
Дата: | 2022 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2022
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1612 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematicsid |
oai:ojs.admjournal.luguniv.edu.ua:article-1612 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-16122022-10-14T16:01:17Z An identity on automorphisms of Lie ideals in prime rings Rehmam, N. prime ring, automorphisms; maximal right ring of quotients, generalized polynomial identity 16N60, 16W20, 16R50 In the present paper it is shown that a prime ring \(R\) with center \(Z\) satisfies \(s_4\), the standard identity in four variables if \(R\) admits a non-identity automorphism \(\sigma\) such that \( [u, v] - u^{m}[u^\sigma,u]^nu^\sigma\in Z\) for all \(u\) in some noncentral ideal \(L\) of \(R\), whenever \(\operatorname{char}(R)>n+m\) or \(\operatorname{char}(R)=0\), where \(n\) and \(m\) are fixed positive integer. Lugansk National Taras Shevchenko University 2022-10-14 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1612 10.12958/adm1612 Algebra and Discrete Mathematics; Vol 33, No 2 (2022) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1612/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1612/716 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1612/1009 Copyright (c) 2022 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
collection |
OJS |
language |
English |
topic |
prime ring automorphisms; maximal right ring of quotients generalized polynomial identity 16N60 16W20 16R50 |
spellingShingle |
prime ring automorphisms; maximal right ring of quotients generalized polynomial identity 16N60 16W20 16R50 Rehmam, N. An identity on automorphisms of Lie ideals in prime rings |
topic_facet |
prime ring automorphisms; maximal right ring of quotients generalized polynomial identity 16N60 16W20 16R50 |
format |
Article |
author |
Rehmam, N. |
author_facet |
Rehmam, N. |
author_sort |
Rehmam, N. |
title |
An identity on automorphisms of Lie ideals in prime rings |
title_short |
An identity on automorphisms of Lie ideals in prime rings |
title_full |
An identity on automorphisms of Lie ideals in prime rings |
title_fullStr |
An identity on automorphisms of Lie ideals in prime rings |
title_full_unstemmed |
An identity on automorphisms of Lie ideals in prime rings |
title_sort |
identity on automorphisms of lie ideals in prime rings |
description |
In the present paper it is shown that a prime ring \(R\) with center \(Z\) satisfies \(s_4\), the standard identity in four variables if \(R\) admits a non-identity automorphism \(\sigma\) such that \( [u, v] - u^{m}[u^\sigma,u]^nu^\sigma\in Z\) for all \(u\) in some noncentral ideal \(L\) of \(R\), whenever \(\operatorname{char}(R)>n+m\) or \(\operatorname{char}(R)=0\), where \(n\) and \(m\) are fixed positive integer. |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2022 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1612 |
work_keys_str_mv |
AT rehmamn anidentityonautomorphismsoflieidealsinprimerings AT rehmamn identityonautomorphismsoflieidealsinprimerings |
first_indexed |
2024-04-12T06:27:23Z |
last_indexed |
2024-04-12T06:27:23Z |
_version_ |
1796109247016075264 |