On the nilpotence of the prime radical in module categories
For \(M\in R\)-Mod and \(\tau\) a hereditary torsion theory on the category \(\sigma [M]\) we use the concept of prime and semiprime module defined by Raggi et al. to introduce the concept of \(\tau\)-pure prime radical \(\mathfrak{N}_{\tau}(M) =\mathfrak{N}_{\tau}\) as the intersection of all \(\ta...
Saved in:
Date: | 2022 |
---|---|
Main Authors: | Arellano, C., Castro, J., Ríos, J. |
Format: | Article |
Language: | English |
Published: |
Lugansk National Taras Shevchenko University
2022
|
Subjects: | |
Online Access: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1634 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete MathematicsSimilar Items
-
The prime spectrum of the universal enveloping algebra of the 1-spatial ageing algebra and of \(U(\mathfrak{gl}_2)\)
by: Bavula, V., et al.
Published: (2021) -
Prime radical of Ore extensions over \(\delta\)-rigid rings
by: Bhat, V. K.
Published: (2018) -
Rad-supplements in injective modules
by: Buyukasik, Engin, et al.
Published: (2016) -
A survey of results on radicals and torsions in modules
by: Kashu, A. I.
Published: (2016) -
Amply (weakly) Goldie-Rad-supplemented modules
by: Takıl Mutlu, Figen
Published: (2016)