Isodual and self-dual codes from graphs
Binary linear codes are constructed from graphs, in particular, by the generator matrix \([I_n | A]\) where \(A\) is the adjacency matrix of a graph on \(n\) vertices. A combinatorial interpretation of the minimum distance of such codes is given. We also present graph theoretic conditions for such l...
Saved in:
| Date: | 2021 |
|---|---|
| Main Authors: | , |
| Format: | Article |
| Language: | English |
| Published: |
Lugansk National Taras Shevchenko University
2021
|
| Subjects: | |
| Online Access: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1645 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| Summary: | Binary linear codes are constructed from graphs, in particular, by the generator matrix \([I_n | A]\) where \(A\) is the adjacency matrix of a graph on \(n\) vertices. A combinatorial interpretation of the minimum distance of such codes is given. We also present graph theoretic conditions for such linear codes to be Type I and Type II self-dual. Several examples of binary linear codes produced by well-known graph classes are given. |
|---|