A note on modular group algebras with upper Lie nilpotency indices

Let \(KG\) be the modular group algebra of an arbitrary group \(G\) over a field \(K\) of characteristic \(p>0\). In this paper we give some improvements of upper Lie nilpotency index \(t^{L}(KG)\) of the group algebra \(KG\). It can be seen that if \(KG\) is Lie nilpotent, then its lower as...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2022
Автори: Bhatt, S., Chandra, H.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2022
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1694
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:Let \(KG\) be the modular group algebra of an arbitrary group \(G\) over a field \(K\) of characteristic \(p>0\). In this paper we give some improvements of upper Lie nilpotency index \(t^{L}(KG)\) of the group algebra \(KG\). It can be seen that if \(KG\) is Lie nilpotent, then its lower as well as upper Lie nilpotency index is at least \(p+1\). In this way the classification of group algebras \(KG\) with next upper Lie nilpotency index \(t^{L}(KG)\) upto \(9p-7\) have already been classified. Furthermore, we give a complete classification of modular group algebra \(KG\) for which the upper Lie nilpotency index is \(10p-8\).