A note on modular group algebras with upper Lie nilpotency indices
Let \(KG\) be the modular group algebra of an arbitrary group \(G\) over a field \(K\) of characteristic \(p>0\). In this paper we give some improvements of upper Lie nilpotency index \(t^{L}(KG)\) of the group algebra \(KG\). It can be seen that if \(KG\) is Lie nilpotent, then its lower as...
Збережено в:
Дата: | 2022 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2022
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1694 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete MathematicsРезюме: | Let \(KG\) be the modular group algebra of an arbitrary group \(G\) over a field \(K\) of characteristic \(p>0\). In this paper we give some improvements of upper Lie nilpotency index \(t^{L}(KG)\) of the group algebra \(KG\). It can be seen that if \(KG\) is Lie nilpotent, then its lower as well as upper Lie nilpotency index is at least \(p+1\). In this way the classification of group algebras \(KG\) with next upper Lie nilpotency index \(t^{L}(KG)\) upto \(9p-7\) have already been classified. Furthermore, we give a complete classification of modular group algebra \(KG\) for which the upper Lie nilpotency index is \(10p-8\). |
---|