A note on modular group algebras with upper Lie nilpotency indices

Let \(KG\) be the modular group algebra of an arbitrary group \(G\) over a field \(K\) of characteristic \(p>0\). In this paper we give some improvements of upper Lie nilpotency index \(t^{L}(KG)\) of the group algebra \(KG\). It can be seen that if \(KG\) is Lie nilpotent, then its lower as...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2022
Автори: Bhatt, S., Chandra, H.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2022
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1694
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1694
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-16942022-10-14T16:01:17Z A note on modular group algebras with upper Lie nilpotency indices Bhatt, S. Chandra, H. group algebras, Lie nilpotency index, Lie dimension subgroups 16S34, 17B30 Let \(KG\) be the modular group algebra of an arbitrary group \(G\) over a field \(K\) of characteristic \(p>0\). In this paper we give some improvements of upper Lie nilpotency index \(t^{L}(KG)\) of the group algebra \(KG\). It can be seen that if \(KG\) is Lie nilpotent, then its lower as well as upper Lie nilpotency index is at least \(p+1\). In this way the classification of group algebras \(KG\) with next upper Lie nilpotency index \(t^{L}(KG)\) upto \(9p-7\) have already been classified. Furthermore, we give a complete classification of modular group algebra \(KG\) for which the upper Lie nilpotency index is \(10p-8\). Lugansk National Taras Shevchenko University 2022-10-14 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1694 10.12958/adm1694 Algebra and Discrete Mathematics; Vol 33, No 2 (2022) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1694/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1694/757 Copyright (c) 2022 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic group algebras
Lie nilpotency index
Lie dimension subgroups
16S34
17B30
spellingShingle group algebras
Lie nilpotency index
Lie dimension subgroups
16S34
17B30
Bhatt, S.
Chandra, H.
A note on modular group algebras with upper Lie nilpotency indices
topic_facet group algebras
Lie nilpotency index
Lie dimension subgroups
16S34
17B30
format Article
author Bhatt, S.
Chandra, H.
author_facet Bhatt, S.
Chandra, H.
author_sort Bhatt, S.
title A note on modular group algebras with upper Lie nilpotency indices
title_short A note on modular group algebras with upper Lie nilpotency indices
title_full A note on modular group algebras with upper Lie nilpotency indices
title_fullStr A note on modular group algebras with upper Lie nilpotency indices
title_full_unstemmed A note on modular group algebras with upper Lie nilpotency indices
title_sort note on modular group algebras with upper lie nilpotency indices
description Let \(KG\) be the modular group algebra of an arbitrary group \(G\) over a field \(K\) of characteristic \(p>0\). In this paper we give some improvements of upper Lie nilpotency index \(t^{L}(KG)\) of the group algebra \(KG\). It can be seen that if \(KG\) is Lie nilpotent, then its lower as well as upper Lie nilpotency index is at least \(p+1\). In this way the classification of group algebras \(KG\) with next upper Lie nilpotency index \(t^{L}(KG)\) upto \(9p-7\) have already been classified. Furthermore, we give a complete classification of modular group algebra \(KG\) for which the upper Lie nilpotency index is \(10p-8\).
publisher Lugansk National Taras Shevchenko University
publishDate 2022
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1694
work_keys_str_mv AT bhatts anoteonmodulargroupalgebraswithupperlienilpotencyindices
AT chandrah anoteonmodulargroupalgebraswithupperlienilpotencyindices
AT bhatts noteonmodulargroupalgebraswithupperlienilpotencyindices
AT chandrah noteonmodulargroupalgebraswithupperlienilpotencyindices
first_indexed 2024-04-12T06:26:45Z
last_indexed 2024-04-12T06:26:45Z
_version_ 1796109192131510272