On the structure of some groups having finite contranormal subgroups
Following J.S. Rose, a subgroup \(H\) of the group \(G\) is said to be contranormal in \(G\), if \(G=H^{G}\). In a certain sense, contranormal subgroups are antipodes to subnormal subgroups. We study the structure of Abelian-by-nilpotent groups having a finite proper contranormal \(p\)-subgroup.
Збережено в:
Дата: | 2021 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2021
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1724 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematicsid |
oai:ojs.admjournal.luguniv.edu.ua:article-1724 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-17242021-04-11T06:11:31Z On the structure of some groups having finite contranormal subgroups Kurdachenko, L. A. Semko, N. N. contranormal subgroups, Abelian-by-nilpotent groups, hypercenter of a group, \(G\)-eccentric subgroups, rationally irreducible subgroups 20E99, 20F18, 20F19 Following J.S. Rose, a subgroup \(H\) of the group \(G\) is said to be contranormal in \(G\), if \(G=H^{G}\). In a certain sense, contranormal subgroups are antipodes to subnormal subgroups. We study the structure of Abelian-by-nilpotent groups having a finite proper contranormal \(p\)-subgroup. Lugansk National Taras Shevchenko University National Research Foundation of Ukraine 2021-04-10 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1724 10.12958/adm1724 Algebra and Discrete Mathematics; Vol 31, No 1 (2021) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1724/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1724/785 Copyright (c) 2021 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
collection |
OJS |
language |
English |
topic |
contranormal subgroups Abelian-by-nilpotent groups hypercenter of a group \(G\)-eccentric subgroups rationally irreducible subgroups 20E99 20F18 20F19 |
spellingShingle |
contranormal subgroups Abelian-by-nilpotent groups hypercenter of a group \(G\)-eccentric subgroups rationally irreducible subgroups 20E99 20F18 20F19 Kurdachenko, L. A. Semko, N. N. On the structure of some groups having finite contranormal subgroups |
topic_facet |
contranormal subgroups Abelian-by-nilpotent groups hypercenter of a group \(G\)-eccentric subgroups rationally irreducible subgroups 20E99 20F18 20F19 |
format |
Article |
author |
Kurdachenko, L. A. Semko, N. N. |
author_facet |
Kurdachenko, L. A. Semko, N. N. |
author_sort |
Kurdachenko, L. A. |
title |
On the structure of some groups having finite contranormal subgroups |
title_short |
On the structure of some groups having finite contranormal subgroups |
title_full |
On the structure of some groups having finite contranormal subgroups |
title_fullStr |
On the structure of some groups having finite contranormal subgroups |
title_full_unstemmed |
On the structure of some groups having finite contranormal subgroups |
title_sort |
on the structure of some groups having finite contranormal subgroups |
description |
Following J.S. Rose, a subgroup \(H\) of the group \(G\) is said to be contranormal in \(G\), if \(G=H^{G}\). In a certain sense, contranormal subgroups are antipodes to subnormal subgroups. We study the structure of Abelian-by-nilpotent groups having a finite proper contranormal \(p\)-subgroup. |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2021 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1724 |
work_keys_str_mv |
AT kurdachenkola onthestructureofsomegroupshavingfinitecontranormalsubgroups AT semkonn onthestructureofsomegroupshavingfinitecontranormalsubgroups |
first_indexed |
2024-04-12T06:26:30Z |
last_indexed |
2024-04-12T06:26:30Z |
_version_ |
1796109217601421312 |