The order of dominance of a monomial ideal

Let \(S\) be a polynomial ring in \(n\) variables over a field, and consider a monomial ideal \(M=(m_1,\ldots,m_q)\) of \(S\). We introduce a new invariant, called order of dominance of \(S/M\), and denoted \(\operatorname{odom}(S/M)\), which has many similarities with the codimension of \(S/M\). We...

Full description

Saved in:
Bibliographic Details
Date:2023
Main Author: Alesandroni, G.
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2023
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1755
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Description
Summary:Let \(S\) be a polynomial ring in \(n\) variables over a field, and consider a monomial ideal \(M=(m_1,\ldots,m_q)\) of \(S\). We introduce a new invariant, called order of dominance of \(S/M\), and denoted \(\operatorname{odom}(S/M)\), which has many similarities with the codimension of \(S/M\). We use the order of dominance to characterize the class of Scarf ideals that are Cohen-Macaulay, and also to characterize when the Taylor resolution is minimal. In addition, we show that \(\operatorname{odom}(S/M)\) has the following properties:(i) \(\operatorname{codim}(S/M) \leq \operatorname{odom}(S/M)\leq \operatorname{pd}(S/M)\).(ii) \(\operatorname{pd}(S/M)=n\) if and only if \(\operatorname{odom}(S/M)=n\).(iii) \(\operatorname{pd}(S/M)=1\) if and only if \(\operatorname{odom}(S/M)=1\).(iv) If \(\operatorname{odom}(S/M)=n-1\), then \(\operatorname{pd}(S/M)=n-1\).(v) If \(\operatorname{odom}(S/M)=q-1\), then \(\operatorname{pd}(S/M)=q-1\).(vi) If \(n=3\), then \(\operatorname{pd}(S/M)=\operatorname{odom}(S/M)\).