On extension of classical Baer results to Poisson algebras
In this paper we prove that if \(P\) is a Poisson algebra and the \(n\)-th hypercenter (center) of \(P\) has a finite codimension, then \(P\) includes a finite-dimensional ideal \(K\) such that \(P/K\) is nilpotent (abelian). As a corollary, we show that if the \(n\)th hypercenter of a Poisson algeb...
Збережено в:
Дата: | 2021 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2021
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1758 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete MathematicsРезюме: | In this paper we prove that if \(P\) is a Poisson algebra and the \(n\)-th hypercenter (center) of \(P\) has a finite codimension, then \(P\) includes a finite-dimensional ideal \(K\) such that \(P/K\) is nilpotent (abelian). As a corollary, we show that if the \(n\)th hypercenter of a Poisson algebra \(P\) (over some specific field) has a finite codimension and \(P\) does not contain zero divisors, then \(P\) is an abelian algebra. |
---|