Approximating length-based invariants in atomic Puiseux monoids

A numerical monoid is a cofinite additive submonoid of the nonnegative integers, while a Puiseux monoid is an additive submonoid of the nonnegative cone of the rational numbers. Using that a Puiseux monoid is an increasing union of copies of numerical monoids, we prove that some of the factorization...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2022
Автор: Polo, H.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2022
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1760
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1760
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-17602022-06-15T04:49:44Z Approximating length-based invariants in atomic Puiseux monoids Polo, H. atomic Puiseux monoids, numerical monoids, approximation, factorization invariants, sets of lengths, elasticity, set of distances Primary 20M13; Secondary 40A05, 20M14 A numerical monoid is a cofinite additive submonoid of the nonnegative integers, while a Puiseux monoid is an additive submonoid of the nonnegative cone of the rational numbers. Using that a Puiseux monoid is an increasing union of copies of numerical monoids, we prove that some of the factorization invariants of these two classes of monoids are related through a limiting process. This allows us to extend results from numerical to Puiseux monoids. We illustrate the versatility of this technique by recovering various known results about Puiseux monoids. Lugansk National Taras Shevchenko University 2022-06-15 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1760 10.12958/adm1760 Algebra and Discrete Mathematics; Vol 33, No 1 (2022) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1760/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1760/824 Copyright (c) 2022 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic atomic Puiseux monoids
numerical monoids
approximation
factorization invariants
sets of lengths
elasticity
set of distances
Primary 20M13; Secondary 40A05
20M14
spellingShingle atomic Puiseux monoids
numerical monoids
approximation
factorization invariants
sets of lengths
elasticity
set of distances
Primary 20M13; Secondary 40A05
20M14
Polo, H.
Approximating length-based invariants in atomic Puiseux monoids
topic_facet atomic Puiseux monoids
numerical monoids
approximation
factorization invariants
sets of lengths
elasticity
set of distances
Primary 20M13; Secondary 40A05
20M14
format Article
author Polo, H.
author_facet Polo, H.
author_sort Polo, H.
title Approximating length-based invariants in atomic Puiseux monoids
title_short Approximating length-based invariants in atomic Puiseux monoids
title_full Approximating length-based invariants in atomic Puiseux monoids
title_fullStr Approximating length-based invariants in atomic Puiseux monoids
title_full_unstemmed Approximating length-based invariants in atomic Puiseux monoids
title_sort approximating length-based invariants in atomic puiseux monoids
description A numerical monoid is a cofinite additive submonoid of the nonnegative integers, while a Puiseux monoid is an additive submonoid of the nonnegative cone of the rational numbers. Using that a Puiseux monoid is an increasing union of copies of numerical monoids, we prove that some of the factorization invariants of these two classes of monoids are related through a limiting process. This allows us to extend results from numerical to Puiseux monoids. We illustrate the versatility of this technique by recovering various known results about Puiseux monoids.
publisher Lugansk National Taras Shevchenko University
publishDate 2022
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1760
work_keys_str_mv AT poloh approximatinglengthbasedinvariantsinatomicpuiseuxmonoids
first_indexed 2024-04-12T06:25:14Z
last_indexed 2024-04-12T06:25:14Z
_version_ 1796109232020389888