On dual Rickart modules and weak dual Rickart modules

Let \(R\) be a ring. A right \(R\)-module \(M\) is called \(\mathrm{d}\)-Rickart if for every endomorphism \(\varphi\) of \(M\), \(\varphi(M)\) is a direct summand of \(M\) and it is called \(\mathrm{wd}\)-Rickart if for every nonzero endomorphism \(\varphi\) of \(M\), \(\varphi(M)\) contains a nonz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Keskin Tütüncü, Derya, Orhan Ertas, Nil, Tribak, Rachid
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/178
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Beschreibung
Zusammenfassung:Let \(R\) be a ring. A right \(R\)-module \(M\) is called \(\mathrm{d}\)-Rickart if for every endomorphism \(\varphi\) of \(M\), \(\varphi(M)\) is a direct summand of \(M\) and it is called \(\mathrm{wd}\)-Rickart if for every nonzero endomorphism \(\varphi\) of \(M\), \(\varphi(M)\) contains a nonzero direct summand of \(M\). We begin with some basic properties of \(\mathrm{(w)d}\)-Rickart modules. Then we study direct sums of \(\mathrm{(w)d}\)-Rickart modules and the class of rings for which every finitely generated module is \(\mathrm{(w)d}\)-Rickart. We conclude by some structure results.