On dual Rickart modules and weak dual Rickart modules
Let \(R\) be a ring. A right \(R\)-module \(M\) is called \(\mathrm{d}\)-Rickart if for every endomorphism \(\varphi\) of \(M\), \(\varphi(M)\) is a direct summand of \(M\) and it is called \(\mathrm{wd}\)-Rickart if for every nonzero endomorphism \(\varphi\) of \(M\), \(\varphi(M)\) contains a nonz...
Saved in:
| Date: | 2018 |
|---|---|
| Main Authors: | , , |
| Format: | Article |
| Language: | English |
| Published: |
Lugansk National Taras Shevchenko University
2018
|
| Subjects: | |
| Online Access: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/178 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| Summary: | Let \(R\) be a ring. A right \(R\)-module \(M\) is called \(\mathrm{d}\)-Rickart if for every endomorphism \(\varphi\) of \(M\), \(\varphi(M)\) is a direct summand of \(M\) and it is called \(\mathrm{wd}\)-Rickart if for every nonzero endomorphism \(\varphi\) of \(M\), \(\varphi(M)\) contains a nonzero direct summand of \(M\). We begin with some basic properties of \(\mathrm{(w)d}\)-Rickart modules. Then we study direct sums of \(\mathrm{(w)d}\)-Rickart modules and the class of rings for which every finitely generated module is \(\mathrm{(w)d}\)-Rickart. We conclude by some structure results. |
|---|