On dual Rickart modules and weak dual Rickart modules

Let \(R\) be a ring. A right \(R\)-module \(M\) is called \(\mathrm{d}\)-Rickart if for every endomorphism \(\varphi\) of \(M\), \(\varphi(M)\) is a direct summand of \(M\) and it is called \(\mathrm{wd}\)-Rickart if for every nonzero endomorphism \(\varphi\) of \(M\), \(\varphi(M)\) contains a nonz...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Keskin Tütüncü, Derya, Orhan Ertas, Nil, Tribak, Rachid
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/178
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-178
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-1782018-07-24T22:56:15Z On dual Rickart modules and weak dual Rickart modules Keskin Tütüncü, Derya Orhan Ertas, Nil Tribak, Rachid dual Rickart modules, weak dual Rickart modules, weak Rickart rings, V-rings Primary 16D10; Secondary 16D80 Let \(R\) be a ring. A right \(R\)-module \(M\) is called \(\mathrm{d}\)-Rickart if for every endomorphism \(\varphi\) of \(M\), \(\varphi(M)\) is a direct summand of \(M\) and it is called \(\mathrm{wd}\)-Rickart if for every nonzero endomorphism \(\varphi\) of \(M\), \(\varphi(M)\) contains a nonzero direct summand of \(M\). We begin with some basic properties of \(\mathrm{(w)d}\)-Rickart modules. Then we study direct sums of \(\mathrm{(w)d}\)-Rickart modules and the class of rings for which every finitely generated module is \(\mathrm{(w)d}\)-Rickart. We conclude by some structure results. Lugansk National Taras Shevchenko University Scientific and Technological Research Council of Turkey 2018-07-25 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/178 Algebra and Discrete Mathematics; Vol 25, No 2 (2018) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/178/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/178/64 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-07-24T22:56:15Z
collection OJS
language English
topic dual Rickart modules
weak dual Rickart modules
weak Rickart rings
V-rings
Primary 16D10
Secondary 16D80
spellingShingle dual Rickart modules
weak dual Rickart modules
weak Rickart rings
V-rings
Primary 16D10
Secondary 16D80
Keskin Tütüncü, Derya
Orhan Ertas, Nil
Tribak, Rachid
On dual Rickart modules and weak dual Rickart modules
topic_facet dual Rickart modules
weak dual Rickart modules
weak Rickart rings
V-rings
Primary 16D10
Secondary 16D80
format Article
author Keskin Tütüncü, Derya
Orhan Ertas, Nil
Tribak, Rachid
author_facet Keskin Tütüncü, Derya
Orhan Ertas, Nil
Tribak, Rachid
author_sort Keskin Tütüncü, Derya
title On dual Rickart modules and weak dual Rickart modules
title_short On dual Rickart modules and weak dual Rickart modules
title_full On dual Rickart modules and weak dual Rickart modules
title_fullStr On dual Rickart modules and weak dual Rickart modules
title_full_unstemmed On dual Rickart modules and weak dual Rickart modules
title_sort on dual rickart modules and weak dual rickart modules
description Let \(R\) be a ring. A right \(R\)-module \(M\) is called \(\mathrm{d}\)-Rickart if for every endomorphism \(\varphi\) of \(M\), \(\varphi(M)\) is a direct summand of \(M\) and it is called \(\mathrm{wd}\)-Rickart if for every nonzero endomorphism \(\varphi\) of \(M\), \(\varphi(M)\) contains a nonzero direct summand of \(M\). We begin with some basic properties of \(\mathrm{(w)d}\)-Rickart modules. Then we study direct sums of \(\mathrm{(w)d}\)-Rickart modules and the class of rings for which every finitely generated module is \(\mathrm{(w)d}\)-Rickart. We conclude by some structure results.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/178
work_keys_str_mv AT keskintutuncuderya ondualrickartmodulesandweakdualrickartmodules
AT orhanertasnil ondualrickartmodulesandweakdualrickartmodules
AT tribakrachid ondualrickartmodulesandweakdualrickartmodules
first_indexed 2025-07-17T10:33:31Z
last_indexed 2025-07-17T10:33:31Z
_version_ 1837889918538350592