Homotopy equivalence of normalized and unnormalized complexes, revisited

We consider the unnormalized and normalized complexes of a simplicial or a cosimplicial object coming from the Dold-Kan correspondence for an idempotent complete additive category (kernels and cokernels are not required). The normalized complex is defined as the image of certain idempotent in the un...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2022
Автори: Lyubashenko, V., Matsui, A.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2022
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1879
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1879
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-18792022-03-28T05:34:02Z Homotopy equivalence of normalized and unnormalized complexes, revisited Lyubashenko, V. Matsui, A. idempotent, simplicial object; homotopy in chain complexes, Dold--Kan correspondence 18G31, 18N50 We consider the unnormalized and normalized complexes of a simplicial or a cosimplicial object coming from the Dold-Kan correspondence for an idempotent complete additive category (kernels and cokernels are not required). The normalized complex is defined as the image of certain idempotent in the unnormalized complex. We prove that this idempotent is homotopic to identity via homotopy which is expressed via faces and degeneracies. Hence, the normalized and unnormalized complex are homotopy isomorphic to each other. We provide explicit formulae for the homotopy. Lugansk National Taras Shevchenko University 2022-03-28 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1879 10.12958/adm1879 Algebra and Discrete Mathematics; Vol 32, No 2 (2021) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1879/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1879/925 Copyright (c) 2022 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic idempotent
simplicial object; homotopy in chain complexes
Dold--Kan correspondence
18G31
18N50
spellingShingle idempotent
simplicial object; homotopy in chain complexes
Dold--Kan correspondence
18G31
18N50
Lyubashenko, V.
Matsui, A.
Homotopy equivalence of normalized and unnormalized complexes, revisited
topic_facet idempotent
simplicial object; homotopy in chain complexes
Dold--Kan correspondence
18G31
18N50
format Article
author Lyubashenko, V.
Matsui, A.
author_facet Lyubashenko, V.
Matsui, A.
author_sort Lyubashenko, V.
title Homotopy equivalence of normalized and unnormalized complexes, revisited
title_short Homotopy equivalence of normalized and unnormalized complexes, revisited
title_full Homotopy equivalence of normalized and unnormalized complexes, revisited
title_fullStr Homotopy equivalence of normalized and unnormalized complexes, revisited
title_full_unstemmed Homotopy equivalence of normalized and unnormalized complexes, revisited
title_sort homotopy equivalence of normalized and unnormalized complexes, revisited
description We consider the unnormalized and normalized complexes of a simplicial or a cosimplicial object coming from the Dold-Kan correspondence for an idempotent complete additive category (kernels and cokernels are not required). The normalized complex is defined as the image of certain idempotent in the unnormalized complex. We prove that this idempotent is homotopic to identity via homotopy which is expressed via faces and degeneracies. Hence, the normalized and unnormalized complex are homotopy isomorphic to each other. We provide explicit formulae for the homotopy.
publisher Lugansk National Taras Shevchenko University
publishDate 2022
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1879
work_keys_str_mv AT lyubashenkov homotopyequivalenceofnormalizedandunnormalizedcomplexesrevisited
AT matsuia homotopyequivalenceofnormalizedandunnormalizedcomplexesrevisited
first_indexed 2024-04-12T06:26:31Z
last_indexed 2024-04-12T06:26:31Z
_version_ 1796109218342764544