Orbit isomorphic skeleton groups
Recent development in the classification of \(p\)-groups often concentrate on the coclass graph \(\mathcal{G}(p,r)\) associated with the finite \(p\)-groups coclass \(r\), specially on periodicity results on these graphs. In particular, the structure of the subgraph induced by `skeleton groups'...
Збережено в:
| Дата: | 2023 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2023
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1886 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| Резюме: | Recent development in the classification of \(p\)-groups often concentrate on the coclass graph \(\mathcal{G}(p,r)\) associated with the finite \(p\)-groups coclass \(r\), specially on periodicity results on these graphs. In particular, the structure of the subgraph induced by `skeleton groups' is of notable interest. Given their importance, in this paper, we investigate periodicity results of skeleton groups. Our results concentrate on the skeleton groups in \(\mathcal{G}(p,1)\). We find a family of skeleton groups in \(\mathcal{G}(7,1)\) whose \(6\)-step parent is not a periodic parent. This shows that the periodicity results available in the current literature for primes \(p\equiv 5\bmod 6\) do not hold for the primes \(p\equiv 1\bmod 6\). We also improve a known periodicity result in a special case of skeleton groups. |
|---|