Orbit isomorphic skeleton groups

Recent development in the classification of \(p\)-groups often concentrate on the coclass graph \(\mathcal{G}(p,r)\) associated with the finite \(p\)-groups coclass \(r\), specially on periodicity results on these graphs. In particular, the structure of the subgraph induced by `skeleton groups'...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2023
Автор: Saha, S.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2023
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1886
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1886
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-18862023-10-30T03:23:03Z Orbit isomorphic skeleton groups Saha, S. finite groups, \(p\)-groups, coclass 20D15, 20D99 Recent development in the classification of \(p\)-groups often concentrate on the coclass graph \(\mathcal{G}(p,r)\) associated with the finite \(p\)-groups coclass \(r\), specially on periodicity results on these graphs. In particular, the structure of the subgraph induced by `skeleton groups' is of notable interest. Given their importance, in this paper, we investigate periodicity results of skeleton groups. Our results concentrate on the skeleton groups in \(\mathcal{G}(p,1)\). We find a family of skeleton groups in \(\mathcal{G}(7,1)\) whose \(6\)-step parent is not a periodic parent. This shows that the periodicity results available in the current literature for primes \(p\equiv 5\bmod 6\) do not hold for the primes \(p\equiv 1\bmod 6\). We also improve a known periodicity result in a special case of skeleton groups. Lugansk National Taras Shevchenko University Monash University RTP Scholarship, Australia 2023-10-12 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1886 10.12958/adm1886 Algebra and Discrete Mathematics; Vol 35, No 2 (2023) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1886/pdf Copyright (c) 2023 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic finite groups
\(p\)-groups
coclass
20D15
20D99
spellingShingle finite groups
\(p\)-groups
coclass
20D15
20D99
Saha, S.
Orbit isomorphic skeleton groups
topic_facet finite groups
\(p\)-groups
coclass
20D15
20D99
format Article
author Saha, S.
author_facet Saha, S.
author_sort Saha, S.
title Orbit isomorphic skeleton groups
title_short Orbit isomorphic skeleton groups
title_full Orbit isomorphic skeleton groups
title_fullStr Orbit isomorphic skeleton groups
title_full_unstemmed Orbit isomorphic skeleton groups
title_sort orbit isomorphic skeleton groups
description Recent development in the classification of \(p\)-groups often concentrate on the coclass graph \(\mathcal{G}(p,r)\) associated with the finite \(p\)-groups coclass \(r\), specially on periodicity results on these graphs. In particular, the structure of the subgraph induced by `skeleton groups' is of notable interest. Given their importance, in this paper, we investigate periodicity results of skeleton groups. Our results concentrate on the skeleton groups in \(\mathcal{G}(p,1)\). We find a family of skeleton groups in \(\mathcal{G}(7,1)\) whose \(6\)-step parent is not a periodic parent. This shows that the periodicity results available in the current literature for primes \(p\equiv 5\bmod 6\) do not hold for the primes \(p\equiv 1\bmod 6\). We also improve a known periodicity result in a special case of skeleton groups.
publisher Lugansk National Taras Shevchenko University
publishDate 2023
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1886
work_keys_str_mv AT sahas orbitisomorphicskeletongroups
first_indexed 2024-04-12T06:25:41Z
last_indexed 2024-04-12T06:25:41Z
_version_ 1796109207782555648