Orbit isomorphic skeleton groups
Recent development in the classification of \(p\)-groups often concentrate on the coclass graph \(\mathcal{G}(p,r)\) associated with the finite \(p\)-groups coclass \(r\), specially on periodicity results on these graphs. In particular, the structure of the subgraph induced by `skeleton groups'...
Збережено в:
Дата: | 2023 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2023
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1886 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematicsid |
oai:ojs.admjournal.luguniv.edu.ua:article-1886 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-18862023-10-30T03:23:03Z Orbit isomorphic skeleton groups Saha, S. finite groups, \(p\)-groups, coclass 20D15, 20D99 Recent development in the classification of \(p\)-groups often concentrate on the coclass graph \(\mathcal{G}(p,r)\) associated with the finite \(p\)-groups coclass \(r\), specially on periodicity results on these graphs. In particular, the structure of the subgraph induced by `skeleton groups' is of notable interest. Given their importance, in this paper, we investigate periodicity results of skeleton groups. Our results concentrate on the skeleton groups in \(\mathcal{G}(p,1)\). We find a family of skeleton groups in \(\mathcal{G}(7,1)\) whose \(6\)-step parent is not a periodic parent. This shows that the periodicity results available in the current literature for primes \(p\equiv 5\bmod 6\) do not hold for the primes \(p\equiv 1\bmod 6\). We also improve a known periodicity result in a special case of skeleton groups. Lugansk National Taras Shevchenko University Monash University RTP Scholarship, Australia 2023-10-12 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1886 10.12958/adm1886 Algebra and Discrete Mathematics; Vol 35, No 2 (2023) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1886/pdf Copyright (c) 2023 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
collection |
OJS |
language |
English |
topic |
finite groups \(p\)-groups coclass 20D15 20D99 |
spellingShingle |
finite groups \(p\)-groups coclass 20D15 20D99 Saha, S. Orbit isomorphic skeleton groups |
topic_facet |
finite groups \(p\)-groups coclass 20D15 20D99 |
format |
Article |
author |
Saha, S. |
author_facet |
Saha, S. |
author_sort |
Saha, S. |
title |
Orbit isomorphic skeleton groups |
title_short |
Orbit isomorphic skeleton groups |
title_full |
Orbit isomorphic skeleton groups |
title_fullStr |
Orbit isomorphic skeleton groups |
title_full_unstemmed |
Orbit isomorphic skeleton groups |
title_sort |
orbit isomorphic skeleton groups |
description |
Recent development in the classification of \(p\)-groups often concentrate on the coclass graph \(\mathcal{G}(p,r)\) associated with the finite \(p\)-groups coclass \(r\), specially on periodicity results on these graphs. In particular, the structure of the subgraph induced by `skeleton groups' is of notable interest. Given their importance, in this paper, we investigate periodicity results of skeleton groups. Our results concentrate on the skeleton groups in \(\mathcal{G}(p,1)\). We find a family of skeleton groups in \(\mathcal{G}(7,1)\) whose \(6\)-step parent is not a periodic parent. This shows that the periodicity results available in the current literature for primes \(p\equiv 5\bmod 6\) do not hold for the primes \(p\equiv 1\bmod 6\). We also improve a known periodicity result in a special case of skeleton groups. |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2023 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1886 |
work_keys_str_mv |
AT sahas orbitisomorphicskeletongroups |
first_indexed |
2024-04-12T06:25:41Z |
last_indexed |
2024-04-12T06:25:41Z |
_version_ |
1796109207782555648 |