On classifying the non-Tits \(P\)-critical posets

In 2005, the authors described all introduced by them \(P\)-critical posets (minimal finite posets with the quadratic Tits form not being positive); up to isomorphism, their number is 132 (75 if duality is considered). Later (in 2014) A. Polak and D. Simson offered an alternative way of proving by u...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2022
Автори: Bondarenko, V. M., Styopochkina, M. V.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2022
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1912
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:In 2005, the authors described all introduced by them \(P\)-critical posets (minimal finite posets with the quadratic Tits form not being positive); up to isomorphism, their number is 132 (75 if duality is considered). Later (in 2014) A. Polak and D. Simson offered an alternative way of proving by using computer algebra tools. In doing this, they defined and described the Tits \(P\)-critical posets as a special case of the \(P\)-critical posets. In this paper we classify all the non-Tits \(P\)-critical posets without complex calculations and without using the list of all \(P\)-critical ones.