Classical groups as Frobenius complement

The Frobenius group \(G\) belongs to an important class of groups that more than 100 years ago was defined by F. G. Frobenius who proved that \(G\) is a semi-direct product of a normal subgroup \(K\) of \(G\) called kernel by another non-trivial subgroup \(H\) called the complement. In this case we...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2023
Автори: Darefsheh, M., Saydi, H.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2023
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1929
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1929
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-19292023-06-18T17:42:42Z Classical groups as Frobenius complement Darefsheh, M. Saydi, H. classical group, Frobenius group, Frobenius complement 20H20, 20F50 The Frobenius group \(G\) belongs to an important class of groups that more than 100 years ago was defined by F. G. Frobenius who proved that \(G\) is a semi-direct product of a normal subgroup \(K\) of \(G\) called kernel by another non-trivial subgroup \(H\) called the complement. In this case we show that a few of the classical finite groups can be Frobenius complement. Lugansk National Taras Shevchenko University 2023-06-18 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1929 10.12958/adm1929 Algebra and Discrete Mathematics; Vol 35, No 1 (2023) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1929/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1929/954 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1929/1082 Copyright (c) 2023 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2023-06-18T17:42:42Z
collection OJS
language English
topic classical group
Frobenius group
Frobenius complement
20H20
20F50
spellingShingle classical group
Frobenius group
Frobenius complement
20H20
20F50
Darefsheh, M.
Saydi, H.
Classical groups as Frobenius complement
topic_facet classical group
Frobenius group
Frobenius complement
20H20
20F50
format Article
author Darefsheh, M.
Saydi, H.
author_facet Darefsheh, M.
Saydi, H.
author_sort Darefsheh, M.
title Classical groups as Frobenius complement
title_short Classical groups as Frobenius complement
title_full Classical groups as Frobenius complement
title_fullStr Classical groups as Frobenius complement
title_full_unstemmed Classical groups as Frobenius complement
title_sort classical groups as frobenius complement
description The Frobenius group \(G\) belongs to an important class of groups that more than 100 years ago was defined by F. G. Frobenius who proved that \(G\) is a semi-direct product of a normal subgroup \(K\) of \(G\) called kernel by another non-trivial subgroup \(H\) called the complement. In this case we show that a few of the classical finite groups can be Frobenius complement.
publisher Lugansk National Taras Shevchenko University
publishDate 2023
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1929
work_keys_str_mv AT darefshehm classicalgroupsasfrobeniuscomplement
AT saydih classicalgroupsasfrobeniuscomplement
first_indexed 2025-07-17T10:31:05Z
last_indexed 2025-07-17T10:31:05Z
_version_ 1837890133614919680