Classical groups as Frobenius complement
The Frobenius group \(G\) belongs to an important class of groups that more than 100 years ago was defined by F. G. Frobenius who proved that \(G\) is a semi-direct product of a normal subgroup \(K\) of \(G\) called kernel by another non-trivial subgroup \(H\) called the complement. In this case we...
Gespeichert in:
| Datum: | 2023 |
|---|---|
| Hauptverfasser: | Darefsheh, M., Saydi, H. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2023
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1929 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete MathematicsÄhnliche Einträge
-
Camina groups with few conjugacy classes
von: Cangelmi, Leonardo, et al.
Veröffentlicht: (2018) -
A note on semidirect products and nonabelian tensor products of groups
von: Nakaoka, Irene N., et al.
Veröffentlicht: (2018) -
A note on semidirect products and nonabelian tensor products of groups
von: Nakaoka, Irene N., et al.
Veröffentlicht: (2018) -
On the existence of complements in a group to some abelian normal subgroups
von: Dixon, Martyn R., et al.
Veröffentlicht: (2018) -
On the existence of complements in a group to some abelian normal subgroups
von: Dixon, Martyn R., et al.
Veröffentlicht: (2018)