Nakajima quiver varieties, affine crystals and combinatorics of Auslander-Reiten quivers

We obtain an explicit crystal isomorphism between two realizations of crystal bases of finite dimensional irreducible representations of simple Lie algebras of type \(A\) and \(D\). The first realization we consider is a geometric construction in terms of irreducible components of certain Nakajima q...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2023
Автори: Kus, D., Schumann, B.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2023
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1952
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1952
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-19522023-03-06T16:39:17Z Nakajima quiver varieties, affine crystals and combinatorics of Auslander-Reiten quivers Kus, D. Schumann, B. crystal bases, Kirillov-Reshetikhin crystals, Nakajima's quiver varieties, affine Lie algebras 81R50, 81R10, 16G20 We obtain an explicit crystal isomorphism between two realizations of crystal bases of finite dimensional irreducible representations of simple Lie algebras of type \(A\) and \(D\). The first realization we consider is a geometric construction in terms of irreducible components of certain Nakajima quiver varieties established by Saito and the second is a realization in terms of isomorphism classes of quiver representations obtained by Reineke. We give a homological description of the irreducible components of Lusztig's quiver varieties which correspond to the crystal of a finite dimensional representation and describe the promotion operator in type A to obtain a geometric realization of Kirillov-Reshetikhin crystals. Lugansk National Taras Shevchenko University 2023-03-06 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1952 10.12958/adm1952 Algebra and Discrete Mathematics; Vol 34, No 2 (2022) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1952/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1952/996 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1952/1045 Copyright (c) 2023 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic crystal bases
Kirillov-Reshetikhin crystals
Nakajima's quiver varieties
affine Lie algebras
81R50
81R10
16G20
spellingShingle crystal bases
Kirillov-Reshetikhin crystals
Nakajima's quiver varieties
affine Lie algebras
81R50
81R10
16G20
Kus, D.
Schumann, B.
Nakajima quiver varieties, affine crystals and combinatorics of Auslander-Reiten quivers
topic_facet crystal bases
Kirillov-Reshetikhin crystals
Nakajima's quiver varieties
affine Lie algebras
81R50
81R10
16G20
format Article
author Kus, D.
Schumann, B.
author_facet Kus, D.
Schumann, B.
author_sort Kus, D.
title Nakajima quiver varieties, affine crystals and combinatorics of Auslander-Reiten quivers
title_short Nakajima quiver varieties, affine crystals and combinatorics of Auslander-Reiten quivers
title_full Nakajima quiver varieties, affine crystals and combinatorics of Auslander-Reiten quivers
title_fullStr Nakajima quiver varieties, affine crystals and combinatorics of Auslander-Reiten quivers
title_full_unstemmed Nakajima quiver varieties, affine crystals and combinatorics of Auslander-Reiten quivers
title_sort nakajima quiver varieties, affine crystals and combinatorics of auslander-reiten quivers
description We obtain an explicit crystal isomorphism between two realizations of crystal bases of finite dimensional irreducible representations of simple Lie algebras of type \(A\) and \(D\). The first realization we consider is a geometric construction in terms of irreducible components of certain Nakajima quiver varieties established by Saito and the second is a realization in terms of isomorphism classes of quiver representations obtained by Reineke. We give a homological description of the irreducible components of Lusztig's quiver varieties which correspond to the crystal of a finite dimensional representation and describe the promotion operator in type A to obtain a geometric realization of Kirillov-Reshetikhin crystals.
publisher Lugansk National Taras Shevchenko University
publishDate 2023
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1952
work_keys_str_mv AT kusd nakajimaquivervarietiesaffinecrystalsandcombinatoricsofauslanderreitenquivers
AT schumannb nakajimaquivervarietiesaffinecrystalsandcombinatoricsofauslanderreitenquivers
first_indexed 2024-04-12T06:26:46Z
last_indexed 2024-04-12T06:26:46Z
_version_ 1796109192898019328