Note on cyclic doppelsemigroups

A~doppelsemigroup \((G,\dashv,\vdash)\) is called cyclic if \((G,\dashv)\) is a~cyclic group. In the paper, we describe up to isomorphism all cyclic (strong) doppelsemigroups. We prove that up to isomorphism there exist \(\tau(n)\) finite cyclic (strong) doppelsemigroups of order \(n\), where \(\tau...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2023
Автор: Gavrylkiv, V.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2023
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1991
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:A~doppelsemigroup \((G,\dashv,\vdash)\) is called cyclic if \((G,\dashv)\) is a~cyclic group. In the paper, we describe up to isomorphism all cyclic (strong) doppelsemigroups. We prove that up to isomorphism there exist \(\tau(n)\) finite cyclic (strong) doppelsemigroups of order \(n\), where \(\tau\) is the number of divisors function. Also there exist infinite countably many pairwise non-isomorphic infinite cyclic (strong) doppelsemigroups.