Note on cyclic doppelsemigroups

A~doppelsemigroup \((G,\dashv,\vdash)\) is called cyclic if \((G,\dashv)\) is a~cyclic group. In the paper, we describe up to isomorphism all cyclic (strong) doppelsemigroups. We prove that up to isomorphism there exist \(\tau(n)\) finite cyclic (strong) doppelsemigroups of order \(n\), where \(\tau...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2023
Автор: Gavrylkiv, V.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2023
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1991
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1991
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-19912023-02-08T16:55:57Z Note on cyclic doppelsemigroups Gavrylkiv, V. semigroup, interassociativity, doppelsemigroup, strong doppelsemigroup 08B20, 20M10, 20M50, 17A30 A~doppelsemigroup \((G,\dashv,\vdash)\) is called cyclic if \((G,\dashv)\) is a~cyclic group. In the paper, we describe up to isomorphism all cyclic (strong) doppelsemigroups. We prove that up to isomorphism there exist \(\tau(n)\) finite cyclic (strong) doppelsemigroups of order \(n\), where \(\tau\) is the number of divisors function. Also there exist infinite countably many pairwise non-isomorphic infinite cyclic (strong) doppelsemigroups. Lugansk National Taras Shevchenko University 2023-02-08 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1991 10.12958/adm1991 Algebra and Discrete Mathematics; Vol 34, No 1 (2022) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1991/pdf Copyright (c) 2023 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic semigroup
interassociativity
doppelsemigroup
strong doppelsemigroup
08B20
20M10
20M50
17A30
spellingShingle semigroup
interassociativity
doppelsemigroup
strong doppelsemigroup
08B20
20M10
20M50
17A30
Gavrylkiv, V.
Note on cyclic doppelsemigroups
topic_facet semigroup
interassociativity
doppelsemigroup
strong doppelsemigroup
08B20
20M10
20M50
17A30
format Article
author Gavrylkiv, V.
author_facet Gavrylkiv, V.
author_sort Gavrylkiv, V.
title Note on cyclic doppelsemigroups
title_short Note on cyclic doppelsemigroups
title_full Note on cyclic doppelsemigroups
title_fullStr Note on cyclic doppelsemigroups
title_full_unstemmed Note on cyclic doppelsemigroups
title_sort note on cyclic doppelsemigroups
description A~doppelsemigroup \((G,\dashv,\vdash)\) is called cyclic if \((G,\dashv)\) is a~cyclic group. In the paper, we describe up to isomorphism all cyclic (strong) doppelsemigroups. We prove that up to isomorphism there exist \(\tau(n)\) finite cyclic (strong) doppelsemigroups of order \(n\), where \(\tau\) is the number of divisors function. Also there exist infinite countably many pairwise non-isomorphic infinite cyclic (strong) doppelsemigroups.
publisher Lugansk National Taras Shevchenko University
publishDate 2023
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1991
work_keys_str_mv AT gavrylkivv noteoncyclicdoppelsemigroups
first_indexed 2024-04-12T06:25:41Z
last_indexed 2024-04-12T06:25:41Z
_version_ 1796109207889510400