Finite intersection of valuation overrings of polynomial rings in at most three variables

The group of divisibility of an integral domain is the multiplicative group of nonzero principal fractional ideals of the domain and is a partially ordered group under reverse inclusion. We study the group of divisibility of a finite intersection of valuation overrings of polynomial rings in at most...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2024
Автор: Paudel, Lokendra
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2024
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1997
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:The group of divisibility of an integral domain is the multiplicative group of nonzero principal fractional ideals of the domain and is a partially ordered group under reverse inclusion. We study the group of divisibility of a finite intersection of valuation overrings of polynomial rings in at most three variables and we classify all semilocal lattice-ordered groups which are realizable over \(k[x_{1}, x_{2},..., x_{n}]\) for \(n\leq 3\).