Finite intersection of valuation overrings of polynomial rings in at most three variables
The group of divisibility of an integral domain is the multiplicative group of nonzero principal fractional ideals of the domain and is a partially ordered group under reverse inclusion. We study the group of divisibility of a finite intersection of valuation overrings of polynomial rings in at most...
Збережено в:
Дата: | 2024 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2024
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1997 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete MathematicsРезюме: | The group of divisibility of an integral domain is the multiplicative group of nonzero principal fractional ideals of the domain and is a partially ordered group under reverse inclusion. We study the group of divisibility of a finite intersection of valuation overrings of polynomial rings in at most three variables and we classify all semilocal lattice-ordered groups which are realizable over \(k[x_{1}, x_{2},..., x_{n}]\) for \(n\leq 3\). |
---|