Some results on the finite rings with maximal size of pairwise non-commuting elements is 5

Let \(R\) be a finite ring and let \(X\) be a non-empty subset of \(R\). If \(ab\neq ba\) for any two distinct \(a,b\in X\), then \(X\) is called a set of pairwise non-commuting elements of \(R\). Moreover, \(X\) is said to be a set of pairwise non-commuting elements of \(R\) with maximal size if it...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2024
Автори: Chan, Tai Chong, Qua, Kiat Tat, Wong, Denis Chee Keong
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2024
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2004
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:Let \(R\) be a finite ring and let \(X\) be a non-empty subset of \(R\). If \(ab\neq ba\) for any two distinct \(a,b\in X\), then \(X\) is called a set of pairwise non-commuting elements of \(R\). Moreover, \(X\) is said to be a set of pairwise non-commuting elements of \(R\) with maximal size if its cardinality is the largest one among all such sets. In this paper, we study the structures for some finite rings with maximal size of pairwise non-commuting elements is \(5\).