Some results on the finite rings with maximal size of pairwise non-commuting elements is 5
Let \(R\) be a finite ring and let \(X\) be a non-empty subset of \(R\). If \(ab\neq ba\) for any two distinct \(a,b\in X\), then \(X\) is called a set of pairwise non-commuting elements of \(R\). Moreover, \(X\) is said to be a set of pairwise non-commuting elements of \(R\) with maximal size if it...
Збережено в:
Дата: | 2024 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2024
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2004 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete MathematicsРезюме: | Let \(R\) be a finite ring and let \(X\) be a non-empty subset of \(R\). If \(ab\neq ba\) for any two distinct \(a,b\in X\), then \(X\) is called a set of pairwise non-commuting elements of \(R\). Moreover, \(X\) is said to be a set of pairwise non-commuting elements of \(R\) with maximal size if its cardinality is the largest one among all such sets. In this paper, we study the structures for some finite rings with maximal size of pairwise non-commuting elements is \(5\). |
---|