On the group of automorphisms of the semigroup \(\mathbf{B}_{\mathbb{Z}}^{\mathscr{F}}\) with the family \(\mathscr{F}\) of inductive nonempty subsets of \(\omega\)

We study automorphisms of the semigroup \(\mathbf{B}_{\mathbb{Z}}^{\mathscr{F}}\) with the family \(\mathscr{F}\) of inductive nonempty subsets of \(\omega\) and prove that the group \(\mathbf{Aut}(\mathbf{B}_{\mathbb{Z}}^{\mathscr{F}})\) of automorphisms of the semigroup \(\mathbf{B}_{\mathbb{Z}}^{...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2023
Автори: Gutik, O., Pozdniakova, I.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2023
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2010
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозиторії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-2010
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-20102023-06-19T09:27:54Z On the group of automorphisms of the semigroup \(\mathbf{B}_{\mathbb{Z}}^{\mathscr{F}}\) with the family \(\mathscr{F}\) of inductive nonempty subsets of \(\omega\) Gutik, O. Pozdniakova, I. bicyclic monoid, inverse semigroup, bicyclic extension, automorphism, group of automorphism, order-convex set, order isomorphism Primary 20M18; Secondary 20F29, 20M10 We study automorphisms of the semigroup \(\mathbf{B}_{\mathbb{Z}}^{\mathscr{F}}\) with the family \(\mathscr{F}\) of inductive nonempty subsets of \(\omega\) and prove that the group \(\mathbf{Aut}(\mathbf{B}_{\mathbb{Z}}^{\mathscr{F}})\) of automorphisms of the semigroup \(\mathbf{B}_{\mathbb{Z}}^{\mathscr{F}}\) is isomorphic to the additive group of integers. Lugansk National Taras Shevchenko University 2023-06-18 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2010 10.12958/adm2010 Algebra and Discrete Mathematics; Vol 35, No 1 (2023) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2010/pdf Copyright (c) 2023 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic bicyclic monoid
inverse semigroup
bicyclic extension
automorphism
group of automorphism
order-convex set
order isomorphism
Primary 20M18; Secondary 20F29
20M10
spellingShingle bicyclic monoid
inverse semigroup
bicyclic extension
automorphism
group of automorphism
order-convex set
order isomorphism
Primary 20M18; Secondary 20F29
20M10
Gutik, O.
Pozdniakova, I.
On the group of automorphisms of the semigroup \(\mathbf{B}_{\mathbb{Z}}^{\mathscr{F}}\) with the family \(\mathscr{F}\) of inductive nonempty subsets of \(\omega\)
topic_facet bicyclic monoid
inverse semigroup
bicyclic extension
automorphism
group of automorphism
order-convex set
order isomorphism
Primary 20M18; Secondary 20F29
20M10
format Article
author Gutik, O.
Pozdniakova, I.
author_facet Gutik, O.
Pozdniakova, I.
author_sort Gutik, O.
title On the group of automorphisms of the semigroup \(\mathbf{B}_{\mathbb{Z}}^{\mathscr{F}}\) with the family \(\mathscr{F}\) of inductive nonempty subsets of \(\omega\)
title_short On the group of automorphisms of the semigroup \(\mathbf{B}_{\mathbb{Z}}^{\mathscr{F}}\) with the family \(\mathscr{F}\) of inductive nonempty subsets of \(\omega\)
title_full On the group of automorphisms of the semigroup \(\mathbf{B}_{\mathbb{Z}}^{\mathscr{F}}\) with the family \(\mathscr{F}\) of inductive nonempty subsets of \(\omega\)
title_fullStr On the group of automorphisms of the semigroup \(\mathbf{B}_{\mathbb{Z}}^{\mathscr{F}}\) with the family \(\mathscr{F}\) of inductive nonempty subsets of \(\omega\)
title_full_unstemmed On the group of automorphisms of the semigroup \(\mathbf{B}_{\mathbb{Z}}^{\mathscr{F}}\) with the family \(\mathscr{F}\) of inductive nonempty subsets of \(\omega\)
title_sort on the group of automorphisms of the semigroup \(\mathbf{b}_{\mathbb{z}}^{\mathscr{f}}\) with the family \(\mathscr{f}\) of inductive nonempty subsets of \(\omega\)
description We study automorphisms of the semigroup \(\mathbf{B}_{\mathbb{Z}}^{\mathscr{F}}\) with the family \(\mathscr{F}\) of inductive nonempty subsets of \(\omega\) and prove that the group \(\mathbf{Aut}(\mathbf{B}_{\mathbb{Z}}^{\mathscr{F}})\) of automorphisms of the semigroup \(\mathbf{B}_{\mathbb{Z}}^{\mathscr{F}}\) is isomorphic to the additive group of integers.
publisher Lugansk National Taras Shevchenko University
publishDate 2023
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2010
work_keys_str_mv AT gutiko onthegroupofautomorphismsofthesemigroupmathbfbmathbbzmathscrfwiththefamilymathscrfofinductivenonemptysubsetsofomega
AT pozdniakovai onthegroupofautomorphismsofthesemigroupmathbfbmathbbzmathscrfwiththefamilymathscrfofinductivenonemptysubsetsofomega
first_indexed 2024-04-12T06:26:46Z
last_indexed 2024-04-12T06:26:46Z
_version_ 1796109193371975680