2025-02-22T23:39:03-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22oai%3Aojs.admjournal.luguniv.edu.ua%3Aarticle-202%22&qt=morelikethis&rows=5
2025-02-22T23:39:03-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22oai%3Aojs.admjournal.luguniv.edu.ua%3Aarticle-202%22&qt=morelikethis&rows=5
2025-02-22T23:39:03-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T23:39:03-05:00 DEBUG: Deserialized SOLR response

Transformations of \((0,1]\) preserving tails of \(\Delta^{\mu}\)-representation of numbers

Let \(\mu\in (0,1)\) be a given parameter, \(\nu\equiv 1-\mu\). We consider \(\Delta^{\mu}\)-representation of numbers \(x=\Delta^{\mu}_{a_1a_2\ldots a_n\ldots}\) belonging to \((0,1]\) based on their expansion in alternating series or finite sum in the form:\[x=\sum_n(B_{n}-{B'_n})\equiv \Delt...

Full description

Saved in:
Bibliographic Details
Main Authors: Isaieva, Tetiana M., Pratsiovytyi, Mykola V.
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2016
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/202
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let \(\mu\in (0,1)\) be a given parameter, \(\nu\equiv 1-\mu\). We consider \(\Delta^{\mu}\)-representation of numbers \(x=\Delta^{\mu}_{a_1a_2\ldots a_n\ldots}\) belonging to \((0,1]\) based on their expansion in alternating series or finite sum in the form:\[x=\sum_n(B_{n}-{B'_n})\equiv \Delta^{\mu}_{a_1a_2\ldots a_n\ldots},\]where\(B_n=\nu^{a_1+a_3+\ldots+a_{2n-1}-1}{\mu}^{a_2+a_4+\ldots+a_{2n-2}},\)\({B^{\prime}_n}=\nu^{a_1+a_3+\ldots+a_{2n-1}-1}{\mu}^{a_2+a_4+\ldots+a_{2n}},\) \(a_i\!\in\! \mathbb{N}\).This representation has an infinite alphabet \(\{1,2,\ldots\}\), zero redundancy and \(N\)-self-similar geometry.In the paper, classes of continuous strictly increasing functions preserving ``tails'' of \(\Delta^{\mu}\)-representation of numbers are constructed. Using these functions we construct also continuous transformations of \((0,1]\). We prove that the set of all such transformations is infinite and forms non-commutative group together with an composition operation.