2025-02-23T05:04:18-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22oai%3Aojs.admjournal.luguniv.edu.ua%3Aarticle-2042%22&qt=morelikethis&rows=5
2025-02-23T05:04:18-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22oai%3Aojs.admjournal.luguniv.edu.ua%3Aarticle-2042%22&qt=morelikethis&rows=5
2025-02-23T05:04:18-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T05:04:18-05:00 DEBUG: Deserialized SOLR response
A note on multidegrees of automorphisms of the form \((\exp D)_{\star}\)
Let \(k\) be a field of characteristic zero. For any polynomial mapping \(F=(F_1,\ldots,F_n):k^n\rightarrow k^n\) by multidegree of \(F\) we mean the following \(n\)-tuple of natural numbers mdeg \(F=(\deg F_1,\ldots,\deg F_n).\) Let us denote by \(k[x]=k[x_1,\ldots,x_n]\) a ring of polynomials in \...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Lugansk National Taras Shevchenko University
2023
|
Subjects: | |
Online Access: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2042 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
oai:ojs.admjournal.luguniv.edu.ua:article-2042 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-20422023-12-11T16:21:07Z A note on multidegrees of automorphisms of the form \((\exp D)_{\star}\) Karaś, M. Pękała, P. derivation, locally nilpotent derivation, polynomial automorphism, multidegree 13N15; 14R10; 16W20 Let \(k\) be a field of characteristic zero. For any polynomial mapping \(F=(F_1,\ldots,F_n):k^n\rightarrow k^n\) by multidegree of \(F\) we mean the following \(n\)-tuple of natural numbers mdeg \(F=(\deg F_1,\ldots,\deg F_n).\) Let us denote by \(k[x]=k[x_1,\ldots,x_n]\) a ring of polynomials in \(n\) variables \(x_1,\ldots,x_n\) over \(k.\) If \(D:k[x]\rightarrow k[x]\) is a locally nilpotent \(k\)-derivation, then one can define the automorphism \(\exp D\) of \(k\)-algebra \(k[x]\) and then the polynomial automorphism \((\exp D)_{\star}\) of \(k^n\). In this note we present a general upper bound of mdeg \((\exp D)_{\star}\) in the case of a triangular derivation \(D\), and also show that this estimataion is exact. Lugansk National Taras Shevchenko University 2023-12-11 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2042 10.12958/adm2042 Algebra and Discrete Mathematics; Vol 36, No 1 (2023) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2042/pdf Copyright (c) 2023 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
collection |
OJS |
language |
English |
topic |
derivation locally nilpotent derivation polynomial automorphism multidegree 13N15; 14R10; 16W20 |
spellingShingle |
derivation locally nilpotent derivation polynomial automorphism multidegree 13N15; 14R10; 16W20 Karaś, M. Pękała, P. A note on multidegrees of automorphisms of the form \((\exp D)_{\star}\) |
topic_facet |
derivation locally nilpotent derivation polynomial automorphism multidegree 13N15; 14R10; 16W20 |
format |
Article |
author |
Karaś, M. Pękała, P. |
author_facet |
Karaś, M. Pękała, P. |
author_sort |
Karaś, M. |
title |
A note on multidegrees of automorphisms of the form \((\exp D)_{\star}\) |
title_short |
A note on multidegrees of automorphisms of the form \((\exp D)_{\star}\) |
title_full |
A note on multidegrees of automorphisms of the form \((\exp D)_{\star}\) |
title_fullStr |
A note on multidegrees of automorphisms of the form \((\exp D)_{\star}\) |
title_full_unstemmed |
A note on multidegrees of automorphisms of the form \((\exp D)_{\star}\) |
title_sort |
note on multidegrees of automorphisms of the form \((\exp d)_{\star}\) |
description |
Let \(k\) be a field of characteristic zero. For any polynomial mapping \(F=(F_1,\ldots,F_n):k^n\rightarrow k^n\) by multidegree of \(F\) we mean the following \(n\)-tuple of natural numbers mdeg \(F=(\deg F_1,\ldots,\deg F_n).\) Let us denote by \(k[x]=k[x_1,\ldots,x_n]\) a ring of polynomials in \(n\) variables \(x_1,\ldots,x_n\) over \(k.\) If \(D:k[x]\rightarrow k[x]\) is a locally nilpotent \(k\)-derivation, then one can define the automorphism \(\exp D\) of \(k\)-algebra \(k[x]\) and then the polynomial automorphism \((\exp D)_{\star}\) of \(k^n\). In this note we present a general upper bound of mdeg \((\exp D)_{\star}\) in the case of a triangular derivation \(D\), and also show that this estimataion is exact. |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2023 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2042 |
work_keys_str_mv |
AT karasm anoteonmultidegreesofautomorphismsoftheformexpdstar AT pekałap anoteonmultidegreesofautomorphismsoftheformexpdstar AT karasm noteonmultidegreesofautomorphismsoftheformexpdstar AT pekałap noteonmultidegreesofautomorphismsoftheformexpdstar |
first_indexed |
2024-04-12T06:25:41Z |
last_indexed |
2024-04-12T06:25:41Z |
_version_ |
1796109208210374656 |