Minimal lattice points in the Newton polyhedron and application to normal ideals
Let \(a_1,..., a_n\) be positive integers and let \(\Delta= NP(a_1,..., a_n)\) be the Newton polyhedron associated to these integers, that is, the convex hull in \(\mathbb{R}^{n}\) of the axial points that have \(a_i\) in the \(x_i\)-axis. We give some characterization of the minimal elements of \(\...
Збережено в:
Дата: | 2024 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2024
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2072 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete MathematicsРезюме: | Let \(a_1,..., a_n\) be positive integers and let \(\Delta= NP(a_1,..., a_n)\) be the Newton polyhedron associated to these integers, that is, the convex hull in \(\mathbb{R}^{n}\) of the axial points that have \(a_i\) in the \(x_i\)-axis. We give some characterization of the minimal elements of \(\Delta\), and then use this characterization to give an alternative simpler proof of a main result of [7] on the normality of monomial ideals. |
---|