Minimal lattice points in the Newton polyhedron and application to normal ideals

Let \(a_1,..., a_n\) be positive integers and let \(\Delta= NP(a_1,..., a_n)\) be the Newton polyhedron associated to these integers, that is, the convex hull in \(\mathbb{R}^{n}\) of the axial points that have \(a_i\) in the \(x_i\)-axis. We give some characterization of the minimal elements of \(\...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2024
Автор: Al-Ayyoub, Ibrahim
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2024
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2072
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:Let \(a_1,..., a_n\) be positive integers and let \(\Delta= NP(a_1,..., a_n)\) be the Newton polyhedron associated to these integers, that is, the convex hull in \(\mathbb{R}^{n}\) of the axial points that have \(a_i\) in the \(x_i\)-axis. We give some characterization of the minimal elements of \(\Delta\), and then use this characterization to give an alternative simpler proof of a main result of [7] on the normality of monomial ideals.